Remote Sensing Techniques for Landslide Prediction, Monitoring, and Early Warning
Funding
Acknowledgments
Conflicts of Interest
References
- Gatto, M.P.; Misiano, S.; Montrasio, L. Space-time prediction of rainfall-induced shallow landslides through Artificial Neural Networks in comparison with the SLIP model. Eng. Geol. 2025, 344, 107822. [Google Scholar] [CrossRef]
- Di Napoli, M.; Tanyas, H.; Castro-Camilo, D.; Calcaterra, D.; Cevasco, A.; Di Martire, D.; Pepe, G.; Brandolini, P.; Lombardo, L. On the estimation of landslide intensity, hazard and density via data-driven models. Nat. Hazards 2023, 119, 1513–1530. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Ji, Y. Landslide displacement prediction based on time series analysis and double-BiLSTM model. Int. J. Env. Res. Pub. Health 2022, 19, 2077. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Chen, K.; Tang, H.; Lin, C.; Cui, W. Using short-interval landslide inventories to build short-term and overall spatial prediction models for earthquake-triggered landslides based on machine learning for the 2018 Lombok earthquake sequence. Nat. Hazards 2022, 114, 3575–3595. [Google Scholar] [CrossRef]
- Li, S.H.; Wu, L.Z.; Chen, J.J.; Huang, R.Q. Multiple data-driven approach for predicting landslide deformation. Landslides 2020, 17, 709–718. [Google Scholar] [CrossRef]
- Wang, H.; Long, G.; Liao, J.; Xu, Y.; Lv, Y. A new hybrid method for establishing point forecasting, interval forecasting, and probabilistic forecasting of landslide displacement. Nat. Hazards 2022, 111, 1479–1505. [Google Scholar] [CrossRef]
- Zai, D.; Pang, R.; Xu, B.; Liu, J. A novel data-driven hybrid intelligent prediction model for reservoir landslide displacement. B Eng. Geol. Environ. 2024, 83, 493. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, X.; Pedrycz, W.; Yang, Q.; Wang, X.; Guo, H. Near real-time spatial prediction of earthquake-triggered landslides based on global inventories from 2008 to 2022. Soil. Dyn. Earthq. Eng. 2024, 185, 108890. [Google Scholar] [CrossRef]
- Li, J.; Fan, C.; Zhao, K.; Zhang, Z.; Duan, P. Landslide displacement prediction using time series InSAR with combined LSTM and TCN: Application to the Xiao Andong landslide, Yunnan Province, China. Nat. Hazards 2025, 121, 3857–3884. [Google Scholar] [CrossRef]
- Long, J.; Li, C.; Liu, Y.; Feng, P.; Zuo, Q. A multi-feature fusion transfer learning method for displacement prediction of rainfall reservoir-induced landslide with step-like deformation characteristics. Eng. Geol. 2022, 297, 106494. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Yao, C.; Catani, F.; Zhou, C.; Huang, J. Uncertainties of landslide susceptibility prediction considering different landslide types. J. Rock. Mech. Geotech. 2023, 15, 2954–2972. [Google Scholar] [CrossRef]
- Hu, X.; Tan, F.; Tang, H.; Zhang, G.; Su, A.; Xu, C.; Zhang, Y.; Xiong, C. In-situ monitoring platform and preliminary analysis of monitoring data of Majiagou landslide with stabilizing piles. Eng. Geol. 2017, 228, 323–336. [Google Scholar] [CrossRef]
- Bonì, R.; Bordoni, M.; Vivaldi, V.; Troisi, C.; Tararbra, M.; Lanteri, L.; Zucca, F.; Meisina, C. Assessment of the Sentinel-1 based ground motion data feasibility for large scale landslide monitoring. Landslides 2020, 17, 2287–2299. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, H.; Chen, J.; Zhang, M.; Su, G.; Zhou, Y.; Chen, Y. Experimental investigation and field application of acoustic emission array for landslide monitoring. Landslides 2024, 21, 71–81. [Google Scholar] [CrossRef]
- Liu, D.; Tang, D.; Zhang, S.; Leng, X.; Hu, K.; He, L. Method for feature analysis and intelligent recognition of infrasound signals of soil landslides. Bull. Eng. Geol. Environ. 2021, 80, 917–932. [Google Scholar] [CrossRef]
- Liu, D.; Tang, D.; Ma, J.; Zhang, S.; Yang, H.; Sang, X. Critical threshold mining of landslide deformation and intelligent early-warning methods based on multi-factor fusion. Bull. Eng. Geol. Environ. 2024, 83, 352. [Google Scholar] [CrossRef]
- Rodriguez, J.; Deane, E.; Hendry, M.T.; Macciotta, R.; Evans, T.; Gräpel, C.; Skirrow, R. Practical evaluation of single-frequency dGNSS for monitoring slow-moving landslides. Landslides 2021, 18, 3671–3684. [Google Scholar] [CrossRef]
- Macciotta, R.; Hendry, M.; Martin, C. Developing an early warning system for a very slow landslide based on displacement monitoring. Nat. Hazards 2016, 81, 887–907. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Qiao, J.; Uchimura, T.; Wang, L. Application and verification of a multivariate real-time early warning method for rainfall-induced landslides: Implication for evolution of landslide-generated debris flows. Landslides 2020, 17, 2409–2419. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Lee, D.; Kim, Y.; Lee, J. A regional-scale landslide early warning methodology applying statistical and physically based approaches in sequence. Eng. Geol. 2019, 260, 105193. [Google Scholar] [CrossRef]
- Zhan, Q.; Wang, S.; Guo, F.; Chen, Y.; Wang, L.; Zhao, D. Early warning model and model test verification of rainfall-induced shallow landslide. Bull. Eng. Geol. Environ. 2022, 81, 318. [Google Scholar] [CrossRef]
- Zhang, S.; Jia, H.; Wang, C.; Wang, X.; He, S.; Jiang, P. Deep-learning-based landslide early warning method for loose deposits slope coupled with groundwater and rainfall monitoring. Comput. Geotech. 2024, 165, 105924. [Google Scholar] [CrossRef]
- Du, Y.; Ning, L.; Chicas, S.; Xie, M. A new early warning criterion for assessing landslide risk. Nat. Hazards 2023, 116, 537–549. [Google Scholar] [CrossRef]
- Pang, S.; Sun, X.; Wang, S.; Gao, L.; He, M.; Tao, Z. A multi-parameter monitoring system and early warning model for rainfall-induced landslides. Bull. Eng. Geol. Environ. 2024, 83, 312. [Google Scholar] [CrossRef]
- Feng, L.; Intrieri, E.; Pazzi, V.; Gigli, G.; Tucci, G. A framework for temporal and spatial rockfall early warning using micro-seismic monitoring. Landslides 2021, 18, 1059–1070. [Google Scholar] [CrossRef]
- Tang, H.; Wang, C.; An, S.; Wang, Q.; Jiang, C. A Novel Heterogeneous Ensemble Framework Based on Machine Learning Models for Shallow Landslide Susceptibility Mapping. Remote Sens. 2023, 15, 4159. [Google Scholar] [CrossRef]
- Bahti, F.; Chung, C.; Lin, C. Parametric Test of the Sentinel 1A Persistent Scatterer- and Small Baseline Subset-Interferogram Synthetic Aperture Radar Processing Using the Stanford Method for Persistent Scatterers for Practical Landslide Monitoring. Remote Sens. 2023, 15, 4662. [Google Scholar] [CrossRef]
- Gong, Y.; Xing, X.; Li, Y.; Zhu, C.; Li, Y.; Yan, J.; Le, H.; Li, X. Insights into the Movement and Diffusion Accumulation Characteristics of a Catastrophic Rock Avalanche Debris—A Case Study. Remote Sens. 2023, 15, 5154. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Li, Y.; Ma, T.; Zhang, X. Research Advances and Prospects of Underwater Terrain-Aided Navigation. Remote Sens. 2024, 16, 2560. [Google Scholar] [CrossRef]
- Li, Q.; Yao, C.; Yao, X.; Zhou, Z.; Ren, K. Time Series Prediction of Reservoir Bank Slope Deformation Based on Informer and InSAR: A Case Study of Dawanzi Landslide in the Baihetan Reservoir Area, China. Remote Sens. 2024, 16, 2688. [Google Scholar] [CrossRef]
- Nie, W.; Tian, C.; Song, D.; Liu, X.; Wang, E. Disaster process and multisource information monitoring and warning method for rainfall-triggered landslide: A case study in the southeastern coastal area of China. Nat. Hazards 2025, 121, 2535–2564. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, H.; Tan, Q.; Mao, M.; Zhou, B.; Zhang, Y. A generalized early warning criterion for the landslide risk assessment: Deformation probability index (DPI). Acta Geotech. 2024, 19, 2607–2627. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Wang, H.; Lu, D. Probabilistic thresholds for regional rainfall induced landslides. Comput. Geotech. 2024, 166, 106040. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Fang, C.; Tao, Z.; Zhang, Q.; Zhang, W.; Yan, J.; He, M.; Cheng, Z. Remote Sensing Techniques for Landslide Prediction, Monitoring, and Early Warning. Remote Sens. 2025, 17, 1893. https://doi.org/10.3390/rs17111893
Zhu C, Fang C, Tao Z, Zhang Q, Zhang W, Yan J, He M, Cheng Z. Remote Sensing Techniques for Landslide Prediction, Monitoring, and Early Warning. Remote Sensing. 2025; 17(11):1893. https://doi.org/10.3390/rs17111893
Chicago/Turabian StyleZhu, Chun, Chengrui Fang, Zhigang Tao, Qiang Zhang, Wen Zhang, Jianhua Yan, Manchao He, and Zhanbo Cheng. 2025. "Remote Sensing Techniques for Landslide Prediction, Monitoring, and Early Warning" Remote Sensing 17, no. 11: 1893. https://doi.org/10.3390/rs17111893
APA StyleZhu, C., Fang, C., Tao, Z., Zhang, Q., Zhang, W., Yan, J., He, M., & Cheng, Z. (2025). Remote Sensing Techniques for Landslide Prediction, Monitoring, and Early Warning. Remote Sensing, 17(11), 1893. https://doi.org/10.3390/rs17111893