Evaluation of Key Remote Sensing Features for Bushfire Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Image Selection and Preprocessing
2.2.2. Calculation of Texture Features
2.2.3. Calculation of Remote Sensing Indices
- (1)
- NDVI is a widely used remote sensing index that indicates vegetation health and coverage. Its calculation formula is as follows:
- (2)
- DI measures the relative intensity between the SWIR and NIR bands, making it a valuable tool for monitoring vegetation health and assessing soil moisture. The formula for its calculation is as follows:
- (3)
- NBR is a widely used remote sensing index for fire detection, capable of indicating the extent of damage caused by fire to healthy vegetation. Its calculation formula is as follows:
- (4)
- NDWI is used to identify the distribution of water bodies and assess soil wetness by analyzing the difference between the NIR and SWIR bands. Its calculation formula is as follows:
- (5)
- EVI is an advanced vegetation index designed to improve upon the NDVI. EVI provides a more precise assessment of vegetation health and coverage. The formula for calculating EVI is as follows:
- (6)
- SAVI is designed to mitigate the influence of soil background on vegetation monitoring, thereby enhancing the accuracy and stability of vegetation analysis, particularly in areas with low vegetation coverage. It is widely used in ecological and environmental research. The calculation formula for SAVI is as follows:
- (7)
- BAI is a simple yet effective index for detecting burned areas after wildfires. It measures the spectral distance between a given pixel and the characteristic reflectance values of burned surfaces in the red and NIR bands. A higher BAI value indicates a higher likelihood of fire-affected land. The formula for BAI is as follows:
2.2.4. Making Labels
2.2.5. Distance-Based Feature Screening Method
- J-M distance
- Mutual Information
- Discriminant Index
2.2.6. Comprehensive Selection of the Best Characteristics and Indices
3. Results
3.1. Results of Various Indicators for Post-Fire Smoke
3.1.1. J-M Distance Analysis of Remote Sensing Indices and Spectral Bands for Post-Fire Smoke
3.1.2. Mutual Information Analysis of Remote Sensing Indices and Spectral Bands for Post-Fire Smoke
3.1.3. Discriminant Index Analysis of Remote Sensing Indices and Spectral Bands for Post-Fire Smoke
3.2. Results of Various Indicators of Burned Land
3.2.1. J-M Distance Analysis of Remote Sensing Indices and Spectral Bands for Burned Land
3.2.2. Mutual Information Analysis of Remote Sensing Indices and Spectral Bands for Burned Land
3.2.3. Discriminant Index Analysis of Remote Sensing Indices and Spectral Bands for Burned Land
3.3. Comprehensive Selection
4. Discussion
4.1. Post-Fire Smoke
4.2. Burned Land
4.3. Final Feature Selection and Implications
4.4. Discrepancies Between Discriminant Index and Other Measures
4.5. Justification for Not Using Model-Based Feature Selection Methods
4.6. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.S.; Baker, P. Natural hazards in Australia: Extreme bushfire. Clim. Change 2016, 139, 85–99. [Google Scholar] [CrossRef]
- Cheney, N.P. Bushfire disasters in Australia, 1945–1975. Aust. For. 1976, 39, 245–268. [Google Scholar] [CrossRef]
- Atedhor, G.O.; Atedhor, C.N. Contexts of sustainable development risk in climate change and anthropogenic-induced bushfire in Nigeria. Sci. Afr. 2024, 25, e02271. [Google Scholar] [CrossRef]
- Robinne, F.N.; Secretariat, F. Impacts of Disasters on Forests, in Particular Forest Fires. UNFFS Background Paper. 2021. Available online: https://www.un.org/esa/forests/wp-content/uploads/2021/08/UNFF16-Bkgd-paper-disasters-forest-fires_052021.pdf (accessed on 11 October 2024).
- Udy, D.G.; Vance, T.R.; Kiem, A.S.; Holbrook, N.J.; Abram, N. Australia’s 2019/20 Black Summer fire weather exceptionally rare over the last 2000 years. Commun. Earth Environ. 2024, 5, 317. [Google Scholar] [CrossRef]
- Steffen, W.; Hughes, L.; Pearce, A. The Heat Is On: Climate Change, Extreme Heat, and Bushfires in Western Australia. Climate Council of Australia. 2015. Available online: https://researchers.mq.edu.au/files/72529918/72529888.pdf (accessed on 14 October 2024).
- Mu, M.; Sabot, M.E.; Ukkola, A.M.; Rifai, S.W.; De Kauwe, M.G.; Hobeichi, S.; Pitman, A.J. Examining the role of biophysical feedback on simulated temperature extremes during the Tinderbox Drought and Black Summer bushfires in Southeast Australia. Weather. Clim. Extrem. 2024, 45, 100703. [Google Scholar] [CrossRef]
- Baranowski, K.; Faust, C.; Eby, P.; Bharti, N. Quantifying the impact of severe bushfires on biodiversity to inform conservation. Res. Sq. 2020. Preprint Version 1. [Google Scholar] [CrossRef]
- Allison, R.S.; Johnston, J.M.; Craig, G.; Jennings, S. Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors 2016, 16, 1310. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Ye, S.; Zhao, H.; Ding, H.; Xie, S. RFWNet: A Multi-scale Remote Sensing Forest Wildfire Detection Network with Digital Twinning, Adaptive Spatial Aggregation, and Dynamic Sparse Features. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4708523. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Dennison, P.; Gitas, I.; Hulley, G.; Kalashnikova, O.; Katagis, T.; Stavros, N. Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote Sens. Environ. 2018, 216, 105–121. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A review on unmanned aerial vehicle remote sensing: Platforms, sensors, data processing methods, and applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Z.; Pan, J. Multi-feature classification of multi-sensor satellite imagery based on dual-polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion images for urban land-cover classification. Sensors 2018, 18, 373. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Mountrakis, G.; Stehman, S.V. Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification. ISPRS J. Photogramm. Remote Sens. 2014, 98, 70–84. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Ye, H.; Dong, Y.; Ma, H.; Ren, Y.; Ruan, C. Identification of wheat yellow rust using spectral and texture features of hyperspectral images. Remote Sens. 2020, 12, 1419. [Google Scholar] [CrossRef]
- Tuominen, S.; Pekkarinen, A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory. Remote Sens. Environ. 2005, 94, 256–268. [Google Scholar] [CrossRef]
- Bolstad, P.; Lillesand, T.M. Rapid maximum likelihood classification. Photogramm. Eng. Remote Sens. 1991, 57, 67–74. [Google Scholar]
- Wacker, A.G.; Landgrebe, D.A. Minimum distance classification in remote sensing. LARS Tech. Rep. 1972, 25. Available online: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1024&context=larstech (accessed on 21 November 2024).
- Mouat, D.A.; Mahin, G.G.; Lancaster, J. Remote sensing techniques in the analysis of change detection. Geocarto Int. 1993, 8, 39–50. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens. 1998, 19, 1501–1518. [Google Scholar] [CrossRef]
- Sader, S.; Stone, T.; Joyce, A. Remote sensing of tropical forests—An overview of research and applications using non-photographic sensors. Photogramm. Eng. Remote Sens. 1990, 56, 1343–1351. [Google Scholar]
- Vogelmann, J.E.; Rock, B.N. Use of Thematic Mapper data for the detection of forest damage caused by the pear thrips. Remote Sens. Environ. 1989, 30, 217–225. [Google Scholar] [CrossRef]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Erener, A.; Düzgün, H.S. A methodology for land use change detection of high-resolution pan images based on texture analysis. Ital. J. Remote Sens. 2009, 41, 47–59. [Google Scholar] [CrossRef]
- Pal, M. Factors Influencing the Accuracy of Remote Sensing Classifications: A Comparative Study. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2002. Available online: https://www.academia.edu/download/3460778/full_phd.pdf (accessed on 29 November 2024).
- Dua, P.; Chenb, Y. Some key techniques on updating spatial data infrastructure by satellite remote sensing imagery. In Proceedings of the ISPRS Workshop on Service and Application of Spatial Data Infrastructure; ISPRS: Hangzhou, China, 2007; Volume XXXVI(4/W6), pp. 209–220. [Google Scholar]
- Rodarmel, C.; Shan, J. Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 2002, 62, 115–122. [Google Scholar]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Wang, J.; Tian, W.; Liu, Q.; Ma, G.; Chu, Y. Downscaling snow depth mapping by fusion of microwave and optical remote sensing data based on deep learning. Remote Sens. 2021, 13, 584. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Lang, P.; Fu, X.; Dong, J.; Yang, H.; Yin, J.; Yang, J.; Martorella, M. Recent advances in deep learning-based SAR image targets detection and recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 6884–6915. [Google Scholar] [CrossRef]
- Niu, K.; Wang, C.; Xu, J.; Liang, J.; Zhou, X.; Wen, K.; Yang, C. Early forest fire detection with UAV image fusion: A novel deep learning method using visible and infrared sensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 6617–6629. [Google Scholar] [CrossRef]
- Park, S.; Im, J. Deep Learning-Based Wildfire Detection and Transferability Verification. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXVI; SPIE: Bellingham, WA, USA, 2024; Volume 13191, p. 131910W. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13191/131910W/Deep-learning-based-wildfire-detection-and-transferability-verification/10.1117/12.3031320.short (accessed on 27 February 2025).
- Singh, H.; Srivastava, S.K. Identification of forest fire-prone region in Lamington National Park using GIS-based multicriteria technique: Validation using field and Sentinel-2-based observations. Geocarto Int. 2025, 40, 2462484. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Wang, S.; Zhao, Z.; Liu, C.; Wen, J. Comparative study of machine learning methods for mapping forest fire areas using Sentinel-1B and 2A imagery. Front. Remote Sens. 2024, 5, 1446641. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, X.; Ban, Y.; Nascetti, A.; Gong, M. Assessing Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2 data for large-scale wildfire-burned area mapping: Insights from the 2017–2019 Canada Wildfires. Remote Sens. 2024, 16, 556. [Google Scholar] [CrossRef]
- Zhang, P.; Ban, Y.; Nascetti, A. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and optical time series. Remote Sens. Environ. 2021, 261, 112467. [Google Scholar] [CrossRef]
- Gibson, R.K.; Mitchell, A.; Chang, H.C. Image texture analysis enhances classification of fire extent and severity using Sentinel 1 and 2 satellite imagery. Remote Sens. 2023, 15, 3512. [Google Scholar] [CrossRef]
- Yilmaz, E.O.; Kavzoglu, T. Burned area detection with Sentinel-2A data: Using deep learning techniques with explainable artificial intelligence. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X-5-2024, 251–257. [Google Scholar] [CrossRef]
- Fan, J.; Yao, Y.; Tang, Q.; Zhang, X.; Xu, J.; Yu, R.; Zhang, L. A hybrid index for monitoring burned vegetation by combining image texture features with vegetation indices. Remote Sens. 2024, 16, 1539. [Google Scholar] [CrossRef]
- Powell, J.M. An Historical Geography of Modern Australia: The Restive Fringe; Cambridge University Press: Cambridge, UK, 1998; Available online: https://books.google.com/books?hl=en&lr=&id=NU5-E-suFwcC&oi=fnd&pg=PR7 (accessed on 24 December 2024).
- Bryant, A.; Sheppard, C. The Blue Mountains: Exploring Landscapes, Geology, and Ecology; New South Wales Press: Sydney, Australia, 2013; Available online: https://www.tandfonline.com/doi/abs/10.1080/03122417.2020.1823086 (accessed on 22 December 2024).
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Zubair, A.R.; Alo, O.A. Grey level co-occurrence matrix (GLCM) based second order statistics for image texture analysis. arXiv 2024, arXiv:2403.04038. Available online: https://arxiv.org/abs/2403.04038 (accessed on 15 December 2024).
- Fonseca, A.; Marshall, M.T.; Salama, S. Enhanced detection of artisanal small-scale mining with spectral and textural segmentation of Landsat time series. Remote Sens. 2024, 16, 1749. [Google Scholar] [CrossRef]
- Fonseca Gomez, A. Detecting Artisanal Small-Scale Gold Mines with LandTrendr Multispectral and Textural Features at the Tapajós River Basin, Brazil. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2021. Available online: http://essay.utwente.nl/88728/1/fonsecagomez.pdf (accessed on 16 December 2024).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1973, 351, 309–317. Available online: https://books.google.com/books?hl=en&lr=&id=cl42FB2_UEcC&oi=fnd&pg=PA309 (accessed on 11 December 2024).
- Chuvieco, E.; Congalton, R.G. Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens. Environ. 1989, 29, 147–159. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- Dokmanic, I.; Parhizkar, R.; Ranieri, J.; Vetterli, M. Euclidean distance matrices: Essential theory, algorithms, and applications. IEEE Signal Process. Mag. 2015, 32, 12–30. [Google Scholar] [CrossRef]
- Choi, E.; Lee, C. Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 2003, 36, 1703–1713. [Google Scholar] [CrossRef]
- Mahjabeen, W.; Alam, S.; Hassan, U.; Zafar, T. Difficulty index, discrimination index and distractor efficiency in multiple choice questions. Ann. PIMS-Shaheed Zulfiqar Ali Bhutto Med. Univ. 2017, 13, 9–12. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E. 2004, 69, 066138. [Google Scholar] [CrossRef] [PubMed]
- Colkesen, I.; Kavzoglu, T.; Sefercik, U.G.; Ozturk, M.Y. Automated mucilage extraction index (AMEI): A novel spectral water index for identifying marine mucilage formations from Sentinel-2 imagery. Int. J. Remote Sens. 2023, 44, 105–141. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, X.; Fu, D.; Wang, Y.; Sun, S.; Wang, F.; Shi, Y. Comparison of the applicability of JM distance feature selection methods for coastal wetland classification. Water 2023, 15, 2212. [Google Scholar] [CrossRef]
- Morales, G.; Sheppard, J.W.; Logan, R.D.; Shaw, J.A. Hyperspectral dimensionality reduction based on inter-band redundancy analysis and greedy spectral selection. Remote Sens. 2021, 13, 3649. [Google Scholar] [CrossRef]
- Bennasar, M.; Hicks, Y.; Setchi, R. Feature selection using joint mutual information maximisation. Expert Syst. Appl. 2015, 42, 8520–8532. [Google Scholar] [CrossRef]
- Horton, D.; Johnson, J.T.; Baris, I.; Jagdhuber, T.; Bindlish, R.; Park, J.; Al-Khaldi, M.M. Wildfire threshold detection and progression monitoring using an improved radar vegetation index in California. Remote Sens. 2024, 16, 3050. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13). Algorithm Theor. Basis Doc. 1999, 3, 295–309. Available online: https://www.cen.uni-hamburg.de/en/icdc/data/land/docs-land/modis-collection6-vegetation-index-atbd-mod13-v03-1.pdf (accessed on 26 December 2024).
- Johnson, L.; Cooke, B.; Ramos, V.H.; Easson, G. Use of NASA Satellite Assets for Predicting Wildfire Potential for Forest Environments in Guatemala. Preliminary Report: University of Mississippi Geoinformatics Center. 2008. Available online: https://www.researchgate.net/profile/Greg-Easson/publication/265154859_Use_of_NASA_Satellite_Assets_for_Predicting_Wildfire_Potential_for_Forest_Environments_in_Guatemala/links/54466d170cf2d62c304dbd14/Use-of-NASA-Satellite-Assets-for-Predicting-Wildfire-Potential-for-Forest-Environments-in-Guatemala.pdf (accessed on 28 December 2024).
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Vandansambuu, B.; Gantumur, B.; Wu, F.; Byambasuren, O.; Bayarsaikhan, S.; Chantsal, N.; Jimseekhuu, M.E. Assessment of burn severity and monitoring of the wildfire recovery process in Mongolia. Fire 2023, 6, 373. [Google Scholar] [CrossRef]
- Moharir, K.; Singh, M.; Pande, C.; Singh, S.K.; Gelete, G. Mapping forest fire-affected areas using advanced machine learning techniques in Damoh District of Central India. Knowl. Based Eng. Sci. 2024, 5, 62–80. [Google Scholar] [CrossRef]
- Singgalen, Y.A. Spatio-temporal analysis through NDVI, NDBI, and SAVI using Landsat 8/9 OLI. J. Comput. Syst. Inform. 2024, 5, 815–831. [Google Scholar]
- Gitas, I.Z.; Mitri, G.H.; Ventura, G. Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery. Remote Sens. Environ. 2004, 92, 409–413. [Google Scholar] [CrossRef]
- Zand, M.; Etemad, A.; Greenspan, M. Flow-based spatio-temporal structured prediction of motion dynamics. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13523–13535. [Google Scholar] [CrossRef]
- Zand, M.; Etemad, A.; Greenspan, M. Diffusion models with deterministic normalizing flow priors. OpenReview, 2024; Preprint. Available online: https://openreview.net/forum?id=ACMNVwcR6v (accessed on 18 May 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Al-Najjar, H.; Beydoun, G.; Kalantar, B.; Zand, M.; Ueda, N. Evaluation of Key Remote Sensing Features for Bushfire Analysis. Remote Sens. 2025, 17, 1823. https://doi.org/10.3390/rs17111823
Yang Z, Al-Najjar H, Beydoun G, Kalantar B, Zand M, Ueda N. Evaluation of Key Remote Sensing Features for Bushfire Analysis. Remote Sensing. 2025; 17(11):1823. https://doi.org/10.3390/rs17111823
Chicago/Turabian StyleYang, Ziyi, Husam Al-Najjar, Ghassan Beydoun, Bahareh Kalantar, Mohsen Zand, and Naonori Ueda. 2025. "Evaluation of Key Remote Sensing Features for Bushfire Analysis" Remote Sensing 17, no. 11: 1823. https://doi.org/10.3390/rs17111823
APA StyleYang, Z., Al-Najjar, H., Beydoun, G., Kalantar, B., Zand, M., & Ueda, N. (2025). Evaluation of Key Remote Sensing Features for Bushfire Analysis. Remote Sensing, 17(11), 1823. https://doi.org/10.3390/rs17111823