Identification and Analysis on Surface Deformation in the Urban Area of Nanchang Based on PS-InSAR Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. PS-InSAR and Data Processing
2.3.1. PS InSAR Technique
2.3.2. SNAP-StaMPS Data Processing
3. Results
3.1. Reliability Assessment
3.2. Surface Deformation Analysis Along the Ganjiang River
4. Discussion
4.1. Causes of Surface Deformation
4.2. Precipitation and Groundwater Level Changes
4.3. The Relationship Between Subsidence and the Water Level of Poyang Lake
4.4. Comparison with Previous Studies
4.5. Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyu, M.; Ke, Y.; Guo, L.; Li, X.; Zhu, L.; Gong, H.; Constantinos, C. Change in Regional Land Subsidence in Beijing after South-to-North Water Diversion Project Observed Using Satellite Radar Interferometry. GISci. Remote Sens. 2020, 57, 140–156. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Z.; Zhang, K. Land Subsidence and Countermeasures for Its Prevention in China. Chin. J. Geol. Hazard Control 2005, 16, 2729. [Google Scholar]
- Xue, Y.Q. Land Subsidence China and its Problems. Quat. Sci. 2003, 23, 585–593. [Google Scholar]
- Jia, S.M.; Tian, F.; Liu, M.K.; Yang, Y. The Risk Assessment Method and Standard on the Construction Land Subsidence in Beijing Area. Urban Geol. 2012, 7, 7–11. [Google Scholar]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking Cities in Indonesia: ALOS PALSAR Detects Rapid Sub-sidence Due to Groundwater and Gas Extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Bui, L.K.; Le, P.V.; Dao, P.D.; Long, N.Q.; Pham, H.V.; Tran, H.H.; Xie, L. Recent Land Deformation Detected by Sentinel-1A InSAR Data (2016–2020) over Hanoi, Vietnam, and the Relationship with Groundwater Level Change. GISci. Remote Sens. 2021, 58, 161–179. [Google Scholar] [CrossRef]
- Le, T.; Chang, C.P.; Nguyen, X.; Yhokha, A. TerraSAR-X Data for High-Precision Land Subsidence Monitoring: A Case Study in the Historical Centre of Hanoi, Vietnam. Remote Sens. 2016, 8, 338. [Google Scholar] [CrossRef]
- Itoh, Y.; Takemura, K.; Ishiyama, T.; Tanaka, Y.; Iwaki, H. Basin Formation at a Contractional Bend of a Large Transcurrent Fault: Plio-Pleistocene Subsidence of the Kobe and Northern Osaka Basins, Japan. Tectonophysics 2000, 321, 327–341. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Yu, X.; Wang, K. Sentinel-1 InSAR and GPS-Integrated Long-Term and Seasonal Subsidence Monitoring in Houston, Texas, USA. Remote Sens. 2022, 14, 6184. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, L.; Jiang, W. Application of PS InSAR Technology in Long-term Slow Crustal Deformation Monitoring. Int. Seismol. Dyn. 2006, 6, 1–6. [Google Scholar]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lin, H.; Ma, P.; Wang, W. Urban Infrastructure Health Monitoring with Spaceborne Multi-Temporal Synthetic Aper-ture Radar Interferometry. Acta Geod. Et Cartogr. Sin. 2017, 46, 1421. [Google Scholar]
- Zhu, J.J.; Li, Z.W.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Ge-Odaetica Et Cartogr. Sin. 2017, 46, 1717. [Google Scholar]
- Mao, W.; Ma, P.; Tang, J. Mapping High Spatial Resolution Ionospheric Total Electron Content by Integrating Time Series InSAR with International Reference Ionosphere Model. ISPRS J. Photogramm. Remote. Sens. 2024, 214, 153–166. [Google Scholar] [CrossRef]
- Wu, J.; Hu, F. Monitoring Ground Subsidence Along the Shanghai Maglev Zone Using TerraSAR-X Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 117–121. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, S.B.; Ding, Z.F.; Zhang, X.L.; Zhang, B.C.; Lu, L. Two Decades of Settlement of Hong Kong International Airport Measured with Multi-Temporal InSAR. Remote Sens. Environ. Interdiscip. J. 2020, 248, 111976. [Google Scholar] [CrossRef]
- Wu, H.A.; Zhang, Y.H.; Luo, G.F.; Kang, Y.K.; Zhu, Y.M. Monitoring ground subsidence in areas covered by dense vegetation using TerraSAR-X images: A case study of Hangzhou. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 55–59. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Yang, C.; Zhang, J. Characterizing and Monitoring Ground Settlement of Marine Reclamation Land of Xiamen New Airport, China with Sentinel-1 SAR Datasets. Remote Sens. 2019, 11, 585. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. Sar Monitoring of Progressive and Seasonal Ground Defor-mation Using the Permanent Scatterers Technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1701. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land Subsidence in Central Mexico Detected by ALOS InSAR Time-Series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Present-Day Land Subsidence Rates, Surface Faulting Hazard and Risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR-ScienceDirect. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Tiwari, A.; Dwivedi, R.; Dikshit, O.; Singh, A.K. A Study on Measuring Surface Deformation of the L’Aquila Region Using the StaMPS Technique. Int. J. Remote Sens. 2016, 37, 819–830. [Google Scholar] [CrossRef]
- Foroughnia, F.; Nemati, S.; Maghsoudi, Y.; Perissin, D. An Iterative PS-InSAR Method for the Analysis of Large Spatio-Temporal Baseline Data Stacks for Land Subsidence Estimation. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 248–258. [Google Scholar] [CrossRef]
- Ma, P.; Wu, Z.; Zhang, Z.; Au, F.T.K. SAR-Transformer-Based Decomposition and Geophysical Interpretation of InSAR Time-Series Deformations for the Hong Kong-Zhuhai-Macao Bridge. Remote Sens. Environ. 2024, 302, 113962. [Google Scholar] [CrossRef]
- Fan, J.L.; Liu, F.P.; Tu, L.P. Study on Surface Deformation Monitoring of Nanchang Based on D-InSAR Technology. Miner. Resour. Geol. 2019, 33, 546. [Google Scholar]
- Gu, H.; Chen, J.; Li, T. Application of PS-InSAR in Surface Deformation Monitoring in Nanchang. Jiangxi Sci. 2019, 37, 49–54. [Google Scholar] [CrossRef]
- Mo, Y.; Zhu, Y.F.; Jiang, L.M. Land Subsidence Monitoring of Nanchang Area Based on Sentinel-1A Using Time Series InSAR Technology. J. Geod. Geodyn. 2020, 40, 270–275. [Google Scholar]
- Gao, H.; Xiong, L.; Chen, J.; Lin, H.; Feng, G. Surface deformation of Nanchang, China 2015–2021 Retrieved via Mul-ti-Temporal InSAR Based on Long- and Short-Time Baseline Net. Remote Sens. 2023, 15, 3253. [Google Scholar] [CrossRef]
- Zheng, F.W.; Liu, X.; Huang, C.; Yuan, Z.H.; Huang, Y.J.; Fang, Z. Hydrogeological Features of Water Supply in City Center of Nanchang City. J. Nanchang Inst. Technol. 2018, 37, 12–16. [Google Scholar]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, B7. [Google Scholar] [CrossRef]
- Li, D.R. Progress of Permanent Scatterer Interferometry. Editor. Board Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 664–668. [Google Scholar]
- Yagüe-Martínez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Dong, S.; Samsonov, S.; Yin, H.; Ye, S.; Cao, Y. Time-Series Analysis of Subsidence Associated with Rapid Urbanization in Shanghai, China Measured with SBAS InSAR Method. Environ. Earth Sci. 2014, 72, 677–691. [Google Scholar]
- Du, H.; Chen, H.; Cao, B. Higher Education Test Materials: Geomorphology and Quaternary Geology; Geological Publishing House: Beijing, China, 1981. [Google Scholar]
- Zhang, Y.Z.; Li, Y.M.; Yang, Y.G.; Wang, D.Y. Quality Evaluation on Geological Environment for the Construction Land in Nanchang, Jiangxi Province. Geol. Surv. Res. 2007, 30, 62–69. [Google Scholar]
- Lan, Y.Y.; Chen, J.M.; Wang, J.X.; Wu, W.J.; Wang, T. Analysis of Dynamic Characteristics and Influencing Factors of Groundwater in Nanchang City. J. Nanchang Inst. Technol. 2017, 36, 32–36. [Google Scholar]
- Xiong, J.; Xiao, R.; He, X. Land Surface Deformation in Nanchang, China 2018–2020 Revealed by Multi-Temporal InSAR. Nat. Hazards Res. 2021, 1, 187–195. [Google Scholar] [CrossRef]
- Hu, B.; Chen, B.; Na, J.; Yao, J.; Zhang, Z.; Du, X. Urban Surface Deformation Management: Assessing Dangerous Subsidence Areas through Regional Surface Deformation, Natural Factors, and Human Activities. Sustainability 2022, 14, 10487. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, Z.; Zhang, Y. InSAR Monitoring of Land Subsidence and Analysis of Influencing Factors in Nanchang City. Sci. Surv. Mapp. 2020, 45, 115–122. [Google Scholar]
- Zebker, H. Accuracy of a Model-Free Algorithm for Temporal Insar Tropospheric Correction. Remote Sens. 2021, 13, 409. [Google Scholar] [CrossRef]
- Hu, H.; Fu, H.; Zhu, J.; Liu, Z.; Wu, K.; Zeng, D.; Wan, A.; Wang, F. Automatic Correction of Time-Varying Orbit Errors for Single-Baseline Single-Polarization InSAR Data Based on Block Adjustment Model. Remote Sens. 2024, 16, 3578. [Google Scholar] [CrossRef]
Sentinel-1A IW SLC | Parameter Information |
---|---|
Polarization | VV + VH |
Path | 40 |
Frame | 87 |
Flight Direction | Ascending |
Range resolution (m) | 5 |
Azimuth resolution (m) | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Pan, J.; Ma, P.; Lin, H. Identification and Analysis on Surface Deformation in the Urban Area of Nanchang Based on PS-InSAR Method. Remote Sens. 2025, 17, 157. https://doi.org/10.3390/rs17010157
Zhang M, Pan J, Ma P, Lin H. Identification and Analysis on Surface Deformation in the Urban Area of Nanchang Based on PS-InSAR Method. Remote Sensing. 2025; 17(1):157. https://doi.org/10.3390/rs17010157
Chicago/Turabian StyleZhang, Mengping, Jiayi Pan, Peifeng Ma, and Hui Lin. 2025. "Identification and Analysis on Surface Deformation in the Urban Area of Nanchang Based on PS-InSAR Method" Remote Sensing 17, no. 1: 157. https://doi.org/10.3390/rs17010157
APA StyleZhang, M., Pan, J., Ma, P., & Lin, H. (2025). Identification and Analysis on Surface Deformation in the Urban Area of Nanchang Based on PS-InSAR Method. Remote Sensing, 17(1), 157. https://doi.org/10.3390/rs17010157