Long-Term Impacts of 250 Wind Farms on Surface Temperature and Vegetation in China: A Remote Sensing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Evaluating the Effects of Wind Farms
2.3. The Significant t-Test
3. Results
3.1. The Effects of Wind Farms on Surface Temperature
3.2. The Effects of Wind Farms on Vegetation
3.3. The Impacts of Wind Farms Depend on Their Size and Distance
3.4. The Correlations Between the Impacts of Wind Farms with Latitude, Longitude and Elevation
4. Discussion
4.1. The Reasons for Changes in LST
4.2. The Reasons for Changes in Vegetation
4.3. Limitations
5. Conclusions
- (1)
- Our results demonstrated that wind farms have contrasting effects on LST during day and night, notably rising by 0.20 °C in nighttime LST and falling by 0.11 °C in daytime LST. These temperature changes exhibited strong seasonal variability during the daytime, yet remained relatively consistent at night.
- (2)
- A total of 75.20% of the wind farms negatively impacted vegetation, with no discernible seasonality in this effect.
- (3)
- Larger wind farms, as well as those in closer proximity to sampling areas, were found to exert a stronger influence on both LST and vegetation dynamics.
- (4)
- Our analysis revealed that geographic factors, such as latitude, longitude, and elevation, showed weak correlations with the observed changes in LST and vegetation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Msigwa, G.; Yang, M.Y.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Yang, J.B.; Liu, Q.Y.; Li, X.; Cui, X.D. Overview of Wind Power in China: Status and Future. Sustainability 2017, 9, 1454. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, L.; Li, Z.; Gao, X. Progress in the Research on the Impact of Wind Farms on Climate and Environment. Adv. Earth Sci. 2019, 34, 1038–1049. [Google Scholar]
- Ai, Z.; He, F.; Chen, Z.H.; Zhong, S.X.; Shen, Y.B. Simulated Influence of Mountainous Wind Farms Operations on Local Climate. J. Trop. Meteorol. 2022, 28, 109–120. [Google Scholar] [CrossRef]
- Siedersleben, S.K.; Platis, A.; Lundquist, J.K.; Djath, B.; Lampert, A.; Bärfuss, K.; Cañadillas, B.; Schulz-Stellenfleth, J.; Bange, J.; Neumann, T.; et al. Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF (3.8.1). Geosci. Model Dev. 2020, 13, 249–268. [Google Scholar] [CrossRef]
- Akter, S.; Loo, J.K.; Hannan, M.A. Assessing the Impact of Climate Conditions on Harnessing Coastal (Offshore) Wind Energy. In Proceedings of the International Conference on Civil and Environmental Engineering (ICCEE), Kuala Lumpur, Malaysia, 2–5 October 2018. [Google Scholar]
- Harris, R.A.; Zhou, L.M.; Xia, G. Satellite Observations of Wind Farm Impacts on Nocturnal Land Surface Temperature in Iowa. Remote Sens. 2014, 6, 12234–12246. [Google Scholar] [CrossRef]
- Liu, N.J.; Zhao, X.; Zhang, X.; Zhao, J.C.; Wang, H.Y.; Wu, D.H. Heterogeneous warming impacts of desert wind farms on land surface temperature and their potential drivers in Northern China. Environ. Res. Commun. 2022, 4, 105006. [Google Scholar] [CrossRef]
- Long, Y.X.; Chen, Y.N.; Xu, C.C.; Li, Z.; Liu, Y.C.; Wang, H.Y. The role of global installed wind energy in mitigating CO2 emission and temperature rising. J. Clean. Prod. 2023, 423, 138778. [Google Scholar] [CrossRef]
- Miller, L.M.; Keith, D.W. Climatic Impacts of Wind Power. Joule 2018, 2, 2618–2632. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Ming, X.X.; Mu, Y.F.; Ye, S.T.; Fan, J.R. Climatic impacts of wind power in the relatively stable and unstable atmosphere: A case study in China during the explosive growth from 2009 to 2018. J. Clean. Prod. 2023, 429, 139569. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Cao, Y.; Zhao, Z. Study on the influence of wind farm construction on regional environment and ecological restoration countermeasures. Sci. Technol. Innov. Appl. 2017, 6, 178. [Google Scholar]
- Osman, A.I.; Chen, L.; Yang, M.Y.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741–764. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Roy, S.B.; Traiteur, J.J. Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 17899–17904. [Google Scholar] [CrossRef]
- Ma, X.; Yu, Y.; Xia, D.; Dong, L.; Zhao, S. Impacts of Wind Farms on Land Surface Temperature: A Case Study in Northern Zhangjiakou, Hebei. Plateau Meteorol. 2022, 41, 1074–1085. [Google Scholar]
- Chang, R.; Zhu, R.; Guo, P. A Case Study of Land-Surface-Temperature Impact from Large-Scale Deployment of Wind Farms in China from Guazhou. Remote Sens. 2016, 8, 790. [Google Scholar] [CrossRef]
- Liu, Y.H.; Dang, B.; Xu, Y.M.; Weng, F.Z. An Observational Study on the Local Climate Effect of the Shangyi Wind Farm in Hebei Province. Adv. Atmos. Sci. 2021, 38, 1905–1919. [Google Scholar] [CrossRef]
- Qin, Y.Z.; Li, Y.; Xu, R.; Hou, C.C.; Armstrong, A.; Bach, E.; Wang, Y.; Fu, B.J. Impacts of 319 wind farms on surface temperature and vegetation in the United States. Environ. Res. Lett. 2022, 17, 024026. [Google Scholar] [CrossRef]
- Qi, F.; Li, G.; Dong, L.; Ma, L.; Wang, F. The Effects of Wind Turbines on Surface Temperature and Evapotranspiration in Horqin Grassland. Geospat. Inf. 2019, 17, 107–110. [Google Scholar]
- Zheng, P.; Li, G.; Li, P.; Fang, Z.; Han, Q. Analysis of the impact of wind farms on surface temperature in arid desert areas. Wind Energy. 2018, 4, 64–68. [Google Scholar]
- Wang, G.; Zhao, Y.; Dong, L.; Li, G. The Effects of wind turbines on surface temperature and evapotranspiration in desert grasslands. Geogr. Inf. World 2021, 28, 74–81. [Google Scholar]
- Diffendorfer, J.E.; Vanderhoof, M.K.; Ancona, Z.H. Wind turbine wakes can impact down-wind vegetation greenness. Environ. Res. Lett. 2022, 17, 104025. [Google Scholar] [CrossRef]
- Gao, L.; Wu, Q.Y.; Qiu, J.X.; Mei, Y.D.; Yao, Y.R.; Meng, L.A.; Liu, P.F. The impact of wind energy on plant biomass production in China. Sci. Rep. 2023, 13, 22366. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, W.J.; Duan, X.Y.; Wang, S.; Wang, Q.; Gu, H.L.; Wang, J.S. Effects of Wind Farm Construction on Soil Nutrients and Vegetation: A Case Study of Linxiang Wind Farm in Hunan Province. Sustainability 2024, 16, 6350. [Google Scholar] [CrossRef]
- Ma, B.R.; Yang, J.H.; Chen, X.H.; Zhang, L.X.; Zeng, W.H. Revealing the ecological impact of low-speed mountain wind power on vegetation and soil erosion in South China: A case study of a typical wind farm in Yunnan. J. Clean. Prod. 2023, 419, 138020. [Google Scholar] [CrossRef]
- Su, N.; Li, X.B.; Lyu, X.; Dang, D.L.; Liu, S.Y.; Zhang, C.H. Comprehensive assessment of the climatic and vegetation impacts of wind farms on grasslands: A case study in inner Mongolia, China. J. Environ. Manag. 2024, 370, 122430. [Google Scholar] [CrossRef]
- Luo, L.H.; Zhuang, Y.L.; Duan, Q.T.; Dong, L.X.; Yu, Y.; Liu, Y.H.; Chen, K.R.; Gao, X.Q. Local climatic and environmental effects of an onshore wind farm in North China. Agric. For. Meteorol. 2021, 308, 108607. [Google Scholar] [CrossRef]
- Qiu, X.; Wei, H.; Guo, S.; Hu, X.; Zhang, Y.; Yang, X.; Shang, W. The Effect of Wind Farms on Vegetation in Arid Desert Area. Gansu For. Sci. Technol. 2022, 47, 10–15. [Google Scholar]
- Xu, K.; He, L.C.; Hu, H.J.; Liu, S.Y.; Du, Y.W.; Wang, Z.; Li, Y.Y.; Li, L.; Khan, A.; Wang, G.X. Positive ecological effects of wind farms on vegetation in China’s Gobi desert. Sci. Rep. 2019, 9, 6341. [Google Scholar] [CrossRef]
- Tang, B.J.; Wu, D.H.; Zhao, X.; Zhou, T.; Zhao, W.Q.; Wei, H. The Observed Impacts of Wind Farms on Local Vegetation Growth in Northern China. Remote Sens. 2017, 9, 332. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, L.M. Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Remote Sens. 2017, 9, 698. [Google Scholar] [CrossRef]
- Walsh-Thomas, J.M.; Cervone, G.; Agouris, P.; Manca, G. Further evidence of impacts of large-scale wind farms on land surface temperature. Renew. Sustain. Energy Rev. 2012, 16, 6432–6437. [Google Scholar] [CrossRef]
- Zhou, L.M.; Tian, Y.H.; Roy, S.B.; Dai, Y.J.; Chen, H.S. Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Clim. Dyn. 2013, 41, 307–326. [Google Scholar] [CrossRef]
- Fitch, A.C. Climate Impacts of Large-Scale Wind Farms as Parameterized in a Global Climate Model. J. Clim. 2015, 28, 6160–6180. [Google Scholar] [CrossRef]
- Li, Y.; Kalnay, E.; Motesharrei, S.; Rivas, J.; Kucharski, F.; Kirk-Davidoff, D.; Bach, E.; Zeng, N. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 2018, 361, 1019–1022. [Google Scholar] [CrossRef]
- Pan, Y.; Archer, C.L. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models. Bound.-Layer Meteorol. 2018, 168, 469–495. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhou, L.M.; Tian, Y.H.; Roy, S.B.; Thorncroft, C.; Bosart, L.F.; Hu, Y.L. Impacts of wind farms on land surface temperature. Nat. Clim. Change 2012, 2, 539–543. [Google Scholar] [CrossRef]
- Zhang, X.H.; Xu, M. Assessing the Effects of Photovoltaic Powerplants on Surface Temperature Using Remote Sensing Techniques. Remote Sens. 2020, 12, 1825. [Google Scholar] [CrossRef]
- Abkar, M.; Porté-Agel, F. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Phys. Fluids 2015, 27, 035104. [Google Scholar] [CrossRef]
- Fitch, A.C.; Olson, J.B.; Lundquist, J.K. Parameterization of Wind Farms in Climate Models. J. Clim. 2013, 26, 6439–6458. [Google Scholar] [CrossRef]
- Lu, H.; Porté-Agel, F. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer. Bound.-Layer Meteorol. 2015, 157, 81–96. [Google Scholar] [CrossRef]
- Rajewski, D.A.; Takle, E.S.; Lundquist, J.K.; Oncley, S.; Prueger, J.H.; Horst, T.W.; Rhodes, M.E.; Pfeiffer, R.; Hatfield, J.L.; Spoth, K.K.; et al. Crop Wind Energy Experiment (CWEX) Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm. Bull. Am. Meteorol. Soc. 2013, 94, 655–672. [Google Scholar] [CrossRef]
- Rajewski, D.A.; Takle, E.S.; VanLoocke, A.; Purdy, S.L. Observations Show That Wind Farms Substantially Modify the Atmospheric Boundary Layer Thermal Stratification Transition in the Early Evening. Geophys. Res. Lett. 2020, 47, e2019GL086010. [Google Scholar] [CrossRef]
- Armstrong, A.; Burton, R.R.; Lee, S.E.; Mobbs, S.; Ostle, N.; Smith, V.; Waldron, S.; Whitaker, J. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ. Res. Lett. 2016, 11, 044024. [Google Scholar] [CrossRef]
- Zhou, L.M.; Tian, Y.H.; Chen, H.S.; Dai, Y.J.; Harris, R.A. Effects of Topography on Assessing Wind Farm Impacts Using MODIS Data. Earth Interact. 2013, 17, 1–18. [Google Scholar] [CrossRef]
- Ma, S.; Chen, L.; Ten, Z.; Ding, A.; He, Z. Vegetation Changes in Wind Farm in Desert Steppe Region. J. Desert Res. 2019, 39, 186–192. [Google Scholar]
Product | Product Name | Primary Data | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
MYD11A2 | MODIS/Aqua Land Surface Temperature/Emissivity 8-Day | Land Surface Temperature (LST) and Emissivity | 1 km | 8-day composite |
MYD13A2 | MODIS/Aqua Vegetation Indices 16-Day | Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) | 1 km | 16-day composite |
Factors | Longitude | Latitude | Elevation | |||
---|---|---|---|---|---|---|
p-Value | Correlation | p-Value | Correlation | p-Value | Correlation | p-Value |
Daytime | −0.024 | 0.701 | −0.192 * 1 | 0.002 | 0.076 | 0.233 |
Nighttime | 0.086 | 0.75 | −0.078 | 0.217 | 0.033 | 0.606 |
Peak NDVI | −0.097 | 0.125 | 0.079 | 0.213 | −0.221 ** 1 | <0.001 |
Aqua | Terra | |||||
---|---|---|---|---|---|---|
Positive (%) | Negative (%) | Mean (°C) | Positive (%) | Negative (%) | Mean (°C) | |
Nighttime ∆LST | 61.20 | 38.80 | 0.20 | 60.40 | 39.60 | 0.15 |
Daytime ∆LST | 50.80 | 49.20 | −0.11 | 51.60 | 48.40 | −0.09 |
∆peak NDVI | 24.80 | 75.20 | −0.41 | 22.80 | 77.20 | −0.43 |
∆LST and ∆peak NDVI in Various Time Periods | |||
---|---|---|---|
Time Window | 11 Years | 13 Years | 15 Years |
Wind farm number | 250 | 138 | 85 |
Mean ∆LST (°C) | 0.20 | 0.16 | 0.14 |
Warming effects | 61.20 | 59.42 | 52.94 |
Cooling effects | 38.80 | 40.58 | 47.06 |
Mean ∆peak NDVI | −0.41 | −0.39 | −0.37 |
∆peak NDVI > 0 | 24.80 | 25.20 | 26.50 |
∆peak NDVI < 0 | 75.20 | 74.80 | 73.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Lu, C.; Wang, J. Long-Term Impacts of 250 Wind Farms on Surface Temperature and Vegetation in China: A Remote Sensing Analysis. Remote Sens. 2025, 17, 10. https://doi.org/10.3390/rs17010010
Han X, Lu C, Wang J. Long-Term Impacts of 250 Wind Farms on Surface Temperature and Vegetation in China: A Remote Sensing Analysis. Remote Sensing. 2025; 17(1):10. https://doi.org/10.3390/rs17010010
Chicago/Turabian StyleHan, Xiaohui, Chen Lu, and Jiao Wang. 2025. "Long-Term Impacts of 250 Wind Farms on Surface Temperature and Vegetation in China: A Remote Sensing Analysis" Remote Sensing 17, no. 1: 10. https://doi.org/10.3390/rs17010010
APA StyleHan, X., Lu, C., & Wang, J. (2025). Long-Term Impacts of 250 Wind Farms on Surface Temperature and Vegetation in China: A Remote Sensing Analysis. Remote Sensing, 17(1), 10. https://doi.org/10.3390/rs17010010