Quantitative Research on the Morphological Characteristics of Lunar Impact Craters of Different Stratigraphic Ages since the Imbrian Period
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Impact Crater Data
2.1.2. Topographic Data
2.2. Method
2.2.1. Determining the Boundaries of Impact Craters
2.2.2. Crater Diameter and Depth
2.2.3. Crater Wall Width and Wall Height
2.2.4. Crater Rim Height
2.2.5. Crater Irregularity Index
2.2.6. Crater Volume
2.2.7. Crater Roughness
2.2.8. Mean Slope and Rock Abundance of the Crater Wall
3. Results
3.1. Crater Diameter and Depth
3.2. Crater Wall Width and Wall Height
3.3. Crater Rim Height
3.4. Crater Irregularity Index
3.5. Crater Volume
3.6. Crater Roughness
3.7. Mean Slope and Rock Abundance of the Crater Wall
4. Discussion
4.1. Transition Diameter of Simple-to-Complex Crater Morphology
4.2. The Evolution of Impact Crater Morphology over Time
4.2.1. Different Thermal States at Different Stratigraphic Ages
4.2.2. Different Target Properties at Different Stratigraphic Ages
4.2.3. The Crater Degradation at Different Stratigraphic Ages
5. Conclusions
- (1)
- Based on power law fitting for the relationships between depth, wall height, rim height, and diameter, transition diameters were determined for craters from the Copernican and Eratosthenian periods. Specifically, the craters from the Copernican period had an approximate transition diameter of 13 km, while those from the Eratosthenian period had a diameter of around 15 km. These systematic differences are attributed to the stratification of the target regolith.
- (2)
- Impact craters of the same diameter tend to have greater irregularity with older age, while crater depth, rim height, volume, wall width, wall height, roughness, and rock abundance decrease. Therefore, using the real values of crater morphological parameters and rock abundance may better constrain the stratigraphic ages of impact craters of unknown age.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neukum, G. Meteorite Bombardment and Dating of Planetary Surfaces. Habilitation Thesis, University München, Munich, Germany, 1984; 186p. [Google Scholar]
- Neukum, G.; Ivanov, B.A.; Hartmann, W.K. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System. Space Sci. Rev. 2001, 96, 55–86. [Google Scholar] [CrossRef]
- Marchi, S.; Mottola, S.; Cremonese, G.; Massironi, M.; Martellato, E. A new chronology for the moon and mercury. Astron. J. 2009, 137, 4936. [Google Scholar] [CrossRef]
- Robbins, S.J. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 2014, 403, 188–198. [Google Scholar] [CrossRef]
- Yue, Z.; Di, K.; Wan, W.; Liu, Z.; Gou, S.; Liu, B.; Peng, M.; Wang, Y.; Jia, M.; Liu, J.; et al. Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples. Nat. Astron. 2022, 6, 541–545. [Google Scholar] [CrossRef]
- Pohn, H.A.; Offield, T.W. Lunar Crater Morphology and Relative Age Determination of Lunar Geologic Units—Part 1, Classification; Part 2, Applications; U.S. Geological Survey: Reston, VA, USA, 1969.
- Head, J.W. Processes of lunar crater degradation: Changes in style with geologic time. Moon 1975, 12, 299–329. [Google Scholar] [CrossRef]
- McGill, G.E. Morphology of lunar craters: A test of lunar erosional models. Icarus 1974, 21, 437–447. [Google Scholar] [CrossRef]
- Wood, C.A.; Head, J.W.; Cintala, M.J. Crater degradation on Mercury and the moon-Clues to surface evolution. Lunar Planet. Sci. Conf. Proc. 1977, 8, 3503–3520. [Google Scholar]
- Trang, D.; Gillis-Davis, J.J.; Boyce, J.M. Absolute model ages from lunar crater morphology. J. Geophys. Res. Planets 2015, 120, 725–738. [Google Scholar] [CrossRef]
- Wilhelms, D.E.; McCauley, J.F.; Trask, N.J. The Geologic History of the Moon; U.S. Government Printing Office: Washington, DC, USA, 1987.
- Guo, D.; Liu, J.; Head, J.W.; Zhang, F.; Ling, Z.; Chen, S.; Chen, J.; Ding, X.; Ji, J.; Ouyang, Z. A lunar time scale from the perspective of the Moon’s dynamic evolution. Sci. China Earth Sci. 2023, 67, 234–251. [Google Scholar] [CrossRef]
- Zellner, N.E.B. Lunar Impact Glasses: Probing the Moon’s Surface and Constraining its Impact History. J. Geophys. Res. Planets 2019, 124, 2686–2702. [Google Scholar] [CrossRef]
- Riedel, C.; Minton, D.A.; Michael, G.; Orgel, C.; van der Bogert, C.H.; Hiesinger, H. Degradation of small simple and large complex lunar craters: Not a simple scale dependence. J. Geophys. Res. Planets 2020, 125, e2019JE006273. [Google Scholar] [CrossRef]
- Xiao, Z.; Zeng, Z.; Ding, N.; Molaro, J. Mass wasting features on the Moon—how active is the lunar surface? Earth Planet. Sci. Lett. 2013, 376, 1–11. [Google Scholar] [CrossRef]
- Ikeda, A.; Kumagai, H.; Morota, T. Topographic degradation processes of lunar crater walls inferred from boulder falls. J. Geophys. Res. Planets 2000, 127, e2021JE007176. [Google Scholar] [CrossRef]
- Titley, S.R. Seismic Energy as an Agent of Morphologic Modification on the Moon; Astrogeologic Studies Annual Progress Report; U.S. Geological Survey: Reston, VA, USA, 1966; pp. 87–103.
- Denevi, B.W.; Noble, S.K.; Christoffersen, R.; Thompson, M.S.; Glotch, T.D.; Blewett, D.T.; Garrick-Bethell, I.; Gillis-Davis, J.J.; Greenhagen, B.T.; Hendrix, A.R.; et al. Space Weathering at The Moon. Rev. Mineral. Geochem. 2023, 89, 611–650. [Google Scholar] [CrossRef]
- Croft, S.K. Lunar crater volumes: Interpretation by model of impact cratering and upper crustal structure. In Proceedings of the Lunar and Planetary Science Conference 9th, Houston, TX, USA, 13–17 March 1978; pp. 3711–3733. [Google Scholar]
- Kalynn, J.; Johnson, C.L.; Osinski, G.R.; Barnouin, O. Topographic characterization of lunar complex craters. Geophys. Res. Lett. 2013, 40, 38–42. [Google Scholar] [CrossRef]
- Scott, R. Determining the volume of material excavated during a cratering event. Phys. Educ. 2013, 48, 512–519. [Google Scholar] [CrossRef]
- Sharpton, V.L. Outcrops on lunar crater rims: Implications for rim construction mechanisms, ejecta volumes and excavation depths. J. Geophys. Res. Planets 2014, 119, 154–168. [Google Scholar] [CrossRef]
- Osinski, G.R.; Silber, E.A.; Clayton, J.; Grieve, R.A.F.; Hansen, K.; Johnson, C.L.; Kalynn, J.; Tornabene, L.L. Transitional impact craters on the Moon: Insight into the effect of target lithology on the impact cratering process. Meteorit. Planet. Sci. 2018, 54, 573–591. [Google Scholar] [CrossRef]
- Agarwal, N.; Haridas, A.; Khanna, N.; Srivastava, P.; Jain, V. Study of morphology and degradation of lunar craters using Chandrayaan–1 data. Planet. Space Sci. 2019, 167, 42–53. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, J.; Guo, L.; Somerville, I.; Li, S.; Wang, G.; Wang, P.; Liu, B. The transition from lunar complex crater to peak-ring basin: Constraints on the morphology and volume of central features. Geosystems Geoenvironment 2022, 1, 100014. [Google Scholar] [CrossRef]
- Sun, Q.; Fa, W.; Zhu, M.; Du, J. Morphological characteristics of impact craters with diameters of 5–20 km on the Moon. Icarus 2023, 404, 115688. [Google Scholar] [CrossRef]
- Losiak, A.; Wilhelms, D.E.; Byrne, C.J.; Thaisen, K.; Weider, S.Z.; Kohout, T.; O’Sulllivan, K.; Kring, D.A. A new lunar impact crater database. In Proceedings of the 40th Lunar and Planetary Science Conference, Houston, TX, USA, 23–27 March 2009; p. 1532. [Google Scholar]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Lemoine, F.G.; Mazarico, E.; Torrence, M.H.; McGarry, J.F.; Rowlands, D.D.; Head III, J.W.; Duxbury, T.H.; et al. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 2010, 37, L18204. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Ghent, R.R.; Vasavada, A.R.; Paige, D.A.; Lawrence, S.J.; Robinson, M.S. Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. J. Geophys. Res. 2011, 116, E00H02. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Edwards, C.S.; Poston, M.J.; Klima, R.L. Lunar H2O/OH Distributions: Revised Infrared Spectra from Improved Thermal Corrections. In Proceedings of the 47th Lunar and Planetary Science Conference, Houston, TX, USA, 21–25 March 2016; p. 1594. [Google Scholar]
- Krüger, T.; Hergarten, S.; Kenkmann, T. Deriving Morphometric Parameters and the Simple-to-Complex Transition Diameter From a High-Resolution, Global Database of Fresh Lunar Impact Craters (D ≥ ~3 km). J. Geophys. Res. Planets 2018, 123, 2667–2690. [Google Scholar] [CrossRef]
- Hoover, R.; Robbins, S.; Hynek, B.; Hayne, P. Depth-to-diameter Ratios of Fresh Craters on the Moon and Implications for Surface Age Estimates. Planet. Sci. J. 2024, 5, 26. [Google Scholar] [CrossRef]
- Chandnani, M.; Herrick, R.R.; Kramer, G.Y. Geologic investigation of deep simple craters in the lunar simple-to-complex transition. J. Geophys. Res. Planets 2019, 124, 2482–2504. [Google Scholar] [CrossRef]
- Du, J.; Fa, W.; Wieczorek, M.A.; Xie, M.; Cai, Y.; Zhu, M.-H. Thickness of lunar mare basalts: New results based on modeling the degradation of partially buried craters. J. Geophys. Res. Planets 2019, 124, 2430–2459. [Google Scholar] [CrossRef]
- Sturm, S.; Kenkmann, T.; Hergarten, S. Ejecta thickness and structural rim uplift measurements of Martian impact craters: Implications for the rim formation of complex impact craters. J. Geophys. Res. Planets 2016, 121, 1026–1053. [Google Scholar] [CrossRef]
- Guo, D.; Fa, W.; Wu, B.; Li, Y.; Liu, Y. Millimeter- to decimeter-scale surface roughness of the Moon at the Chang’e-4 exploration region. Geophys. Res. Lett. 2021, 48, e2021GL094931. [Google Scholar] [CrossRef]
- Cai, Y.; Fa, W. Meter-scale topographic roughness of the Moon: The effect of small impact craters. J. Geophys. Res. Planets 2020, 125, e2020JE006429. [Google Scholar] [CrossRef]
- Helfenstein, P.; Shepard, M.K. Submillimeter-scale topography of the lunar regolith. Icarus 2019, 141, 107–131. [Google Scholar] [CrossRef]
- Rubanenko, L.; Schorghofer, N.; Greenhagen, B.T.; Paige, D.A. Equilibrium temperatures and directional emissivity of sunlit airless surfaces with applications to the Moon. J. Geophys. Res. Planets 2020, 125, e2020JE006377. [Google Scholar] [CrossRef]
- Hale, W.S.; Grieve, R.A.F. Volumetric analysis of complex lunar craters: Implications for basin ring formation. J. Geophys. Res. Solid Earth 1982, 87, A65–A76. [Google Scholar] [CrossRef]
- Wang, J.; Kreslavsky, M.A.; Liu, J.; Head, J.W.; Zhang, K.; Kolenkina, M.M.; Zhang, L. Quantitative characterization of impact crater materials on the Moon: Changes in topographic roughness and thermophysical properties with age. J. Geophys. Res. Planets 2020, 125, e2019JE006091. [Google Scholar] [CrossRef]
- Deutsch, A.N.; Head, J.W.; Neumann, G.A.; Kreslavsky, M.A.; Barker, M.K. Assessing the roughness properties of circumpolar Lunar craters: Implications for the timing of water-ice delivery to the Moon. Geophys. Res. Lett. 2020, 47, e2020GL087782. [Google Scholar] [CrossRef]
- Pike, R.J. Depth/diameter relations of fresh lunar craters: Revision from spacecraft data. Geophys. Res. Lett. 1974, 1, 291–294. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Y.; Werner, S.C.; Prieur, N.C.; Xiao, Z. A global analysis of crater depth/diameter ratios on the Moon. Geophys. Res. Lett. 2022, 49, e2022GL100886. [Google Scholar] [CrossRef]
- Wünnemann, K.; Ivanov, B.A. Numerical modelling of the impact crater depth–diameter dependence in an acoustically fluidized target. Planet. Space Sci. 2003, 51, 831–845. [Google Scholar] [CrossRef]
- Pike, R.J. Control of crater morphology by gravity and target type: Mars, Earth, Moon. In Proceedings of the Lunar and Planetary Science Conference, 11th, Houston, TX, USA, 17–21 March 1980; pp. 2159–2189. [Google Scholar]
- Hartmann, W.K. Ancient lunar mega-regolith and subsurface structure. Icarus 1973, 18, 634–636. [Google Scholar] [CrossRef]
- Hiesinger, H.; Jaumann, R.; Neukum, G.; Head, J.W., III. Ages of mare basalts on the lunar nearside. J. Geophys. Res. 2000, 105, 29239–29275. [Google Scholar] [CrossRef]
- Ji, J.; Guo, D.; Liu, J.; Chen, S.; Ling, Z.; Ding, X.; Han, K.; Chen, J.; Chen, W.; Zhu, K.; et al. The 1:2,500,000-scale geologic map of the global Moon. Sci. Bull. 2022, 67, 1544–1548. [Google Scholar] [CrossRef]
- Ding, M.; Soderblom, J.M.; Bierson, C.J.; Zuber, M.T. Investigating the Influences of Crustal Thickness and Temperature on the Uplift of Mantle Materials Beneath Large Impact Craters on the Moon. J. Geophys. Res. Planets 2021, 126, e2020JE006533. [Google Scholar] [CrossRef]
- Hall, J.L.; Solomon, S.C.; Head, J.W. Lunar floor-fractured craters: Evidence for viscous relaxation of crater topography. J. Geophys. Res. 1981, 86, 9537–9552. [Google Scholar] [CrossRef]
- Wichman, R.W.; Schultz, P.H. Floor-fractured craters in Mare Smythii and west of Oceanus Procellarum: Implications of crater modification by viscous relaxation and igneous intrusion models. J. Geophys. Res. 1995, 100, 21201–21218. [Google Scholar] [CrossRef]
- Jozwiak, L.M.; Head, J.W.; Zuber, M.T.; Smith, D.E.; Neumann, G.A. Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. J. Geophys. Res. 2012, 117, E11005. [Google Scholar] [CrossRef]
- Huang, Y.H.; Soderblom, J.M.; Minton, D.A.; Hirabayashi, M.; Melosh, H.J. Bombardment history of the Moon constrained by crustal porosity. Nat. Geosci. 2022, 15, 531–535. [Google Scholar] [CrossRef]
- Soderblom, J.M.; Evans, A.J.; Johnson, B.C.; Melosh, H.J.; Miljković, K.; Phillips, R.J.; Andrews-Hanna, J.C.; Bierson, C.J.; Head Iii, J.W.; Milbury, C.; et al. The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering. Geophys. Res. Lett. 2015, 42, 6939–6944. [Google Scholar] [CrossRef]
- Wiggins, S.E.; Johnson, B.C.; Bowling, T.J.; Melosh, H.J.; Silber, E.A. Impact Fragmentation and the Development of the Deep Lunar Megaregolith. J. Geophys. Res. Planets 2019, 124, 941–957. [Google Scholar] [CrossRef]
- Young, R.A. A Stratigraphic Model for Bessel Crater and Southern Mare Serenitatis; Impact and Explosion Cratering; Pergamon Press: New York, NY, USA, 1977; pp. 527–538. [Google Scholar]
- Wünnemann, K.; Collins, G.S.; Melosh, H.J. A Strain-Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets. Icarus 2006, 180, 514–527. [Google Scholar] [CrossRef]
- Wünnemann, K.; Collins, G.S.; Osinski, G.R. Numerical modelling of impact melt production in porous rocks. Earth Planet. Sci. Lett. 2008, 269, 530–539. [Google Scholar] [CrossRef]
- Tomka, R.; Steinmann, V.; Warren, T.; Kereszturi, A. Morphological analysis of polar landing regions for a solar powered ice drilling mission. Icarus 2024, 411, 115927. [Google Scholar] [CrossRef]
- Scaioni, M.; Yordanov, V.; Brunetti, M.T.; Melis, M.T.; Zinzi, A.; Kang, Z.; Giommi, P. Recognition of landslides in lunar impact craters. Eur. J. Remote Sens. 2018, 51, 47–61. [Google Scholar] [CrossRef]
- Kokelaar, B.P.; Bahia, R.S.; Joy, K.H.; Viroulet, S.; Gray, J.M.N.T. Granular avalanches on the Moon: Mass-wasting conditions, processes, and features. J. Geophys. Res. Planets 2017, 122, 1893–1925. [Google Scholar] [CrossRef]
- Patzek, M.; Rüsch, O. Experimentally induced thermal fatigue on lunar and eucrite meteorites—Influence of the mineralogy on rock breakdown. J. Geophys. Res. Planets 2022, 127, e2022JE007306. [Google Scholar] [CrossRef]
- Basilevsky, A.T.; Head, J.W.; Horz, F. Survival times of meter-sized boulders on the surface of the Moon. Planet. Space Sci. 2013, 89, 118–126. [Google Scholar] [CrossRef]
- Basilevsky, A.T.; Head, J.W.; Horz, F.; Ramsley, K. Survival times of meter-sized rock boulders on the surface of airless bodies. Planet. Space Sci. 2015, 117, 312–328. [Google Scholar] [CrossRef]
- Vanga, S.; Fassett, C.I.; Zanetti, M.; Nypaver, C.; Thomson, B.J.; Hirabayashi, M. Rock abundance on the lunar mare on surfaces of different age: Implications for regolith evolution and thickness. Geophys. Res. Lett. 2022, 49, e2021GL096710. [Google Scholar] [CrossRef]
Stratigraphic Age | Diameter Range (km) | a | b | R2 | d/D Range |
---|---|---|---|---|---|
Copernican | 2.30–~13 | 0.2076 ± 0.0509 | 0.9993 ± 0.1053 | 0.8796 | 0.0414–0.2502 |
~13–97.36 | 0.9920 ± 0.1088 | 0.3482 ± 0.0287 | 0.7526 | ||
Eratosthenian | 3.07–~15 | 0.1985 ± 0.0536 | 0.9908 ± 0.1160 | 0.8554 | 0.0337–0.2243 |
~15–132.44 | 1.1161 ± 0.1165 | 0.3093 ± 0.0270 | 0.5848 | ||
Late Imbrian | 5.67–133.42 | 1.0293 ± 0.1638 | 0.3142 ± 0.0409 | 0.3174 | 0.0184–0.1933 |
Early Imbrian | 8.49–97.64 | 0.6313 ± 0.1385 | 0.4233 ± 0.0572 | 0.3944 | 0.0167–0.1506 |
Stratigraphic Age | Diameter Range (km) | a | b | R2 | Wall Width /Radius Ratio | Wall Height /Depth Ratio | |
---|---|---|---|---|---|---|---|
Copernican | wall width | 2.30–97.36 | 0.7485 ± 0.0487 | 0.7167 ± 0.0165 | 0.9722 | 0.3871–1 | - |
wall height | 2.30–~13 | 0.1985 ± 0.0536 | 0.9908 ± 0.1160 | 0.8554 | - | 0.8092–1 | |
~13–97.36 | 0.85 ± 0.0621 | 0.35 ± 0.0199 | 0.8356 | ||||
Eratosthenian | wall width | 3.07–132.44 | 0.7393 ± 0.0379 | 0.7152 ± 0.0128 | 0.9722 | 0.3587–1 | - |
wall height | 3.07–~15 | 0.1565 ± 0.0255 | 1.0537 ± 0.0683 | 0.9278 | - | 0.7596–1 | |
~15–132.44 | 0.9536 ± 0.0989 | 0.3160 ± 0.0268 | 0.5962 | ||||
Late Imbrian | wall width | 5.67–133.43 | 0.7546 ± 0.1205 | 0.6935 ± 0.0397 | 0.6791 | 0.1362–0.8204 | |
wall height | 5.67–133.43 | 0.9024 ± 0.1476 | 0.3149 ± 0.0420 | 0.3063 | - | 0.7347–0.9591 | |
Early Imbrian | wall width | 8.49–97.64 | 0.5878 ± 0.1206 | 0.7526 ± 0.0521 | 0.6963 | 0.1298–0.6888 | - |
wall height | 8.49–97.64 | 0.5437 ± 0.1281 | 0.4333 ± 0.0613 | 0.3745 | - | 0.5975–0.9604 |
Diameter Range (km) | Number | a | b | R2 | Rim Height /Diameter Ratio | ||
---|---|---|---|---|---|---|---|
16–45 | 5 | 3.86 | 0.56 | 0.9318 | - | Krüger et al., 2017 [32] | |
Highlands | 15–42 | 12 | 0.053 ± 0.144 | 0.958 ± 0.779 | 0.169 | - | Osinski et al., 2018 [23] |
Mare | 21–38 | 13 | 0.180 ± 0.056 | 0.456 ± 0.097 | 0.634 | - | |
Copernican | 2.30–~13 | 21 | 0.1985 ± 0.0536 | 0.9908 ± 0.1160 | 0.8554 | 0.0118–0.0571 | This study |
~13–97.36 | 52 | 0.85 ± 0.0621 | 0.35 ± 0.0199 | 0.8356 | |||
Eratosthenian | 3.07–~15 | 28 | 0.0158 ± 0.0052 | 1.3213 ± 0.1355 | 0.8545 | 0.0090–0.0515 | |
~15–132.44 | 94 | 0.1553 ± 0.0303 | 0.5169 ± 0.0493 | 0.5468 | |||
Late Imbrian | 10.62–133.43 | 124 | 0.1312 ± 0.0280 | 0.5161 ± 0.0537 | 0.4102 | 0.0084–0.0455 | |
Early Imbrian | 8.49–97.64 | 85 | 0.0592 ± 0.0204 | 0.6431 ± 0.0879 | 0.3872 | 0.0072–0.0467 |
Diameter Range (km) | Number | a | b | R2 | ||
---|---|---|---|---|---|---|
17–136 | 20 | 0.29 | 2.37 | Hale and Grieve, 1982 [41] | ||
Copernican | 4.37–97.36 | 73 | 0.35 ± 0.0714 | 2.40 ± 0.0468 | 0.9884 | This study |
Eratosthenian | 3.07–132.38 | 122 | 0.48 ± 0.0367 | 2.31 ± 0.0168 | 0.9947 | |
Late Imbrian | 10.62–132.74 | 124 | 0.32 ± 0.0715 | 2.40 ± 0.0513 | 0.9568 | |
Early Imbrian | 8.48–97.68 | 85 | 0.33 ± 0.0653 | 2.38 ± 0.0459 | 0.9912 |
Stratigraphic Age | Mean | Min | Max | Standard Deviation |
---|---|---|---|---|
Copernican | 23.14 | 15.46 | 33.01 | 5.3004 |
Eratosthenian | 20.54 | 13.66 | 29.74 | 4.3250 |
Late Imbrian | 18.19 | 11.06 | 26.82 | 2.6780 |
Early Imbrian | 17.52 | 10.86 | 25.36 | 2.5004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Liu, J.; Zhang, L.; Gu, Y.; Yue, Z.; Zhang, S.; Zhang, J.; Qin, H.; Liu, J. Quantitative Research on the Morphological Characteristics of Lunar Impact Craters of Different Stratigraphic Ages since the Imbrian Period. Remote Sens. 2024, 16, 1540. https://doi.org/10.3390/rs16091540
Zhang K, Liu J, Zhang L, Gu Y, Yue Z, Zhang S, Zhang J, Qin H, Liu J. Quantitative Research on the Morphological Characteristics of Lunar Impact Craters of Different Stratigraphic Ages since the Imbrian Period. Remote Sensing. 2024; 16(9):1540. https://doi.org/10.3390/rs16091540
Chicago/Turabian StyleZhang, Ke, Jianzhong Liu, Li Zhang, Yaya Gu, Zongyu Yue, Sheng Zhang, Jingyi Zhang, Huibin Qin, and Jingwen Liu. 2024. "Quantitative Research on the Morphological Characteristics of Lunar Impact Craters of Different Stratigraphic Ages since the Imbrian Period" Remote Sensing 16, no. 9: 1540. https://doi.org/10.3390/rs16091540
APA StyleZhang, K., Liu, J., Zhang, L., Gu, Y., Yue, Z., Zhang, S., Zhang, J., Qin, H., & Liu, J. (2024). Quantitative Research on the Morphological Characteristics of Lunar Impact Craters of Different Stratigraphic Ages since the Imbrian Period. Remote Sensing, 16(9), 1540. https://doi.org/10.3390/rs16091540