Investigating the Influence of River Geomorphology on Human Presence Using Night Light Data: A Case Study in the Indus Basin
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.2.1. DMSP Night Light Data
2.2.2. SRTM DEM
2.2.3. LandScan Global Population Data
2.3. Methods
2.3.1. Processing of the DMSP Night Lights (2000–2013)
2.3.2. Extraction of the Indus Watershed and Major River Tributaries
2.3.3. Processing of the LandScan Global Population Data
2.3.4. Presence or Absence of Night Lights across the Basin and Buffer Zones
2.3.5. Night Lights Intensity Distribution with Relation to River Channel Pattern
3. Results
3.1. How Well Do Night Light Data Serve as a Proxy for Human Activity?
3.2. Relation between Night Light Distribution and Proximity to Rivers
3.3. How Does the Intensity of Night Lights Vary in Proximity to Rivers?
3.4. Channel Pattern Influence on Human Presence
4. Discussion
4.1. What Do Night Lights Reveal about Human Presence and Activity in the Indus Basin?
4.2. What Is the Relation between Geomorphological Parameters and Night Lights Distribution?
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Thomsen, K.J.; Sinha, R.; Buylaert, J.P.; Carter, A.; Mark, D.F.; Mason, P.J.; Densmore, A.L.; Murray, A.S.; Jain, M.; et al. Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nat. Commun. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed]
- Ceola, S.; Laio, F.; Montanari, A. Human-impacted waters: New perspectives from global high-resolution monitoring. Water Resour. Res. 2015, 51, 7064–7079. [Google Scholar] [CrossRef]
- Kummu, M.; De Moel, H.; Ward, P.J.; Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 2011, 6, 20578. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Population Prospects: The 2015 Revision: Key Findings and Advance Tables; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Xu, H. Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique. Photogramm. Eng. Remote Sens. 2007, 73, 1381–1391. [Google Scholar] [CrossRef]
- NOAA—Earth Observation Group. Version 4 DMSP-OLS Nighttime Lights Time Series; NOAA’s National Geophysical Data Center: Boulder, CO, USA, 2013. Available online: https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html (accessed on 17 December 2021).
- Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J. Contrasting trends in light pollution across Europe based on satellite-observed night time lights. Sci. Rep. 2014, 4, 3789. [Google Scholar] [CrossRef] [PubMed]
- Chand, T.K.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Small, C. Global population distribution and urban land use in geophysical parameter space. Earth Interact. 2004, 8, 8. [Google Scholar] [CrossRef]
- Ceola, S.; Laio, F.; Montanari, A. Satellite nighttime lights reveal increasing human exposure to floods worldwide. Geophys. Res. Lett. 2014, 41, 7184–7190. [Google Scholar] [CrossRef]
- Ceola, S.; Montanari, A.; Parajka, J.; Viglione, A.; Blöschl, G.; Laio, F. Human signatures derived from nighttime lights along the Eastern Alpine river network in Austria and Italy. Proc. Int. Assoc. Hydrol. Sci. USA 2016, 373, 131–136. [Google Scholar] [CrossRef]
- Gómez, A.; di Baldassarre, G.; Rodhe, A.; Pohjola, V. Remotely Sensed Night Lights to Map Societal Exposure to Hydrometeorological Hazards. Remote Sens. 2015, 7, 12380–12399. [Google Scholar] [CrossRef]
- Mård, J.; Di Baldassarre, G.; Mazzoleni, M. Nighttime light data reveal how flood protection shapes human proximity to rivers. Sci. Adv. 2018, 4, eaar5779. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Ceola, S.; Paik, K.; McGrath, G.; Rao, P.S.C.; Montanari, A.; Jawitz, J.W. Globally Universal Fractal Pattern of Human Settlements in River Networks. Earth’s Future 2018, 6, 1134–1145. [Google Scholar] [CrossRef]
- Masrur, A.; Dewan, A.; Botje, D.; Kiselev, G.; Murshed, M.M. Dynamics of human presence and flood-exposure risk in close proximity to Bangladesh’s river network: An evaluation with multitemporal satellite imagery. Geocarto Int. 2022, 37, 14946–14962. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, A.; Zhou, Z.; Chen, F. Spatial pattern evolution and optimization of urban system in the Yangtze River economic belt, China, based on DMSP-OLS night light data. Sustainability 2018, 10, 3782. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution and response of the fluvial system, sedimentologic implementation. In Recent and Ancient Nonmarine Depositional Environments; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 1981; pp. 19–29. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. AQUASTAT Transboundary River Basin Overview-Indus. 2011. Available online: www.fao.org/ (accessed on 20 November 2022).
- Sharma, A.; Kumar, K.; Laskar, A.; Singh, S.K.; Mehta, P. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system. Geomorphology 2017, 284, 5–16. [Google Scholar] [CrossRef]
- Karim, A.; Veizer, J. Weathering processes in the Indus River Basin: Implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem. Geol. 2000, 170, 153–177. [Google Scholar] [CrossRef]
- Kumar, G.; Sinha, R.; Panda, P.K. The Indus flood of 2010 in Pakistan: A prospective analysis using remote sensing data. Nat. Hazards 2011, 59, 1815–1826. [Google Scholar] [CrossRef]
- Adeel, Z.; Wirsing, R.G. Imagining Industan: Water Security in a New World; Springer: Cham, Switzerland, 2000. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Imhoff, M. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sens. Environ. 1997, 59, 105–117. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Stathakis, D.; Tselios, V.; Faraslis, I. Urbanization in European regions based on night lights. Remote Sens. Appl. Soc. Environ. 2015, 2, 26–34. [Google Scholar] [CrossRef]
- Yin, X.; Li, P.; Feng, Z.; Yang, Y.; You, Z.; Xiao, C. Which gridded population data product is better? Evidences from mainland Southeast Asia (MSEA). ISPRS Int. J. Geo-Inf. 2021, 10, 681. [Google Scholar] [CrossRef]
- Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. LandScan: A global population database for estimating populations at risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Zhou, X.; Wang, H. Application of Google Earth in modern river sedimentology research. J. Geosci. Environ. Prot. 2015, 3, 1. [Google Scholar] [CrossRef]
- Kabanda, T.H. Using land cover, population, and night light data to assess urban expansion in Kimberley, South Africa. S. Afr. Geogr. J. 2022, 104, 539–552. [Google Scholar] [CrossRef]
- Cao, W.; Liu, J.; Ceola, S.; Mao, G.; Macklin, M.G.; Montanari, A.; Ciais, P.; Yao, Y.; Tarolli, P. Landform-driven human reliance on rivers in imperial China. J. Hydrol. 2023, 620, 129353. [Google Scholar] [CrossRef]
- Fang, Y.; Jawitz, J.W. The evolution of human population distance to water in the USA from 1790 to 2010. Nat. Commun. 2019, 10, 430. [Google Scholar] [CrossRef] [PubMed]
- Eaton, B.C.; Millar, R.G.; Davidson, S. Channel patterns: Braided, anabranching, and single-thread. Geomorphology 2010, 12, 353–364. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. The rivers of civilization. Quat. Sci. Rev. 2015, 114, 228–244. [Google Scholar] [CrossRef]
- Levin, N. Using Night Lights from Space to Assess Areas Impacted by the 2023 Turkey Earthquake. Remote Sens. 2023, 15, 2120. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, B.; Liu, Y.; Yao, S.; Lian, T.; Chen, L.; Yang, C.; Chen, Z.; Wu, J. NPP-VIIRS DNB daily data in natural disaster assessment: Evidence from selected case studies. Remote Sens. 2018, 10, 1526. [Google Scholar] [CrossRef]
Geographical Area (km2) | Geographical Area Percentage w.r.t Basin (%) | Number of Lit Pixels (N) | Area Percentage of Lit Pixels w.r.t Basin (%) | Area of Lit Pixels (km2) | Percentage of Lit Pixels w.r.t Geographical Area (%) | Enhancement Factor (Ef-bz) | |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Basin | 1,168,436 | 100 | 560,906 | 100 | 533,211.30 | 45.63 | 1.00 |
0–5 km | 112,657 | 9.64 | 68,352 | 12.19 | 64,977.12 | 57.68 | 1.26 |
5–10 km | 104,533 | 8.95 | 55,692 | 9.93 | 52,942.21 | 50.65 | 1.11 |
10–15 km | 99,004 | 8.47 | 48,884 | 8.72 | 46,470.35 | 46.94 | 1.03 |
15–20 km | 92,233 | 7.89 | 43,778 | 7.80 | 41,616.46 | 45.12 | 0.99 |
Geographical Area (km2) | Geographical Area Percentage w.r.t Basin (%) | Number of Lit Pixels (N) | Area Percentage of Lit Pixels w.r.t Basin (%) | Area of Lit Pixels (km2) | Percentage of Lit Pixels w.r.t Geographical Area (%) | Enhancement Factor (Ef-s) | |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
0–5 km | 21,995.42 | 27.01 | 10,544 | 32.00 | 10,023.39 | 45.57 | 1.18 |
5–10 km | 20,248.08 | 24.86 | 8174 | 24.81 | 7770.41 | 38.38 | 1.00 |
10–15 km | 19,678.50 | 24.16 | 7129 | 21.64 | 6777.01 | 34.44 | 0.90 |
15–20 km | 19,517.19 | 23.97 | 7102 | 21.55 | 6751.34 | 34.59 | 0.90 |
Total | 81,439.19 | 100 | 32,949 | 100 | 31,322.14 | 38.46 | 1.00 |
Geographical Area (km2) | Geographical Area Percentage w.r.t Basin (%) | Number of Lit Pixels (N) | Area Percentage of Lit Pixels w.r.t Basin (%) | Area of Lit Pixels (km2) | Percentage of Lit Pixels w.r.t Geographical Area (%) | Enhancement Factor (Ef-m) | |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
0–5 km | 6392.98 | 26.21 | 5399 | 24.10 | 5132.42 | 80.28 | 0.92 |
5–10 km | 6037.94 | 24.76 | 5933 | 26.48 | 5640.06 | 93.41 | 1.07 |
10–15 km | 5950.71 | 24.40 | 5743 | 25.63 | 5459.44 | 91.74 | 1.05 |
15–20 km | 6005.78 | 24.63 | 5328 | 23.78 | 5064.93 | 84.33 | 0.97 |
Total | 24,387.40 | 100 | 22,403 | 100 | 21,296.85 | 87.33 | 1.00 |
Count | Area (km sq.) | Min | Max | Mean | Std. Dev. | Sum | Median | |
---|---|---|---|---|---|---|---|---|
Basin | 560,906 | 533,211.30 | 0 | 62.64 | 8.01 | 8.05 | 4,491,618.90 | 6.39 |
5 km | 68,352 | 64,977.12 | 0 | 62.64 | 7.22 | 7.63 | 493,725.20 | 5.63 |
10 km | 55,692 | 52,942.21 | 0 | 62.64 | 9.10 | 8.95 | 506,808.10 | 7.15 |
15 km | 48,884 | 46,470.35 | 0 | 62.64 | 9.60 | 8.92 | 469,529.80 | 7.73 |
20 km | 43,778 | 41,616.46 | 0 | 62.55 | 9.66 | 8.89 | 422,969.80 | 7.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggarwal, E.; Whittaker, A.C.; Gupta, S. Investigating the Influence of River Geomorphology on Human Presence Using Night Light Data: A Case Study in the Indus Basin. Remote Sens. 2024, 16, 1272. https://doi.org/10.3390/rs16071272
Aggarwal E, Whittaker AC, Gupta S. Investigating the Influence of River Geomorphology on Human Presence Using Night Light Data: A Case Study in the Indus Basin. Remote Sensing. 2024; 16(7):1272. https://doi.org/10.3390/rs16071272
Chicago/Turabian StyleAggarwal, Ekta, Alexander C. Whittaker, and Sanjeev Gupta. 2024. "Investigating the Influence of River Geomorphology on Human Presence Using Night Light Data: A Case Study in the Indus Basin" Remote Sensing 16, no. 7: 1272. https://doi.org/10.3390/rs16071272
APA StyleAggarwal, E., Whittaker, A. C., & Gupta, S. (2024). Investigating the Influence of River Geomorphology on Human Presence Using Night Light Data: A Case Study in the Indus Basin. Remote Sensing, 16(7), 1272. https://doi.org/10.3390/rs16071272