Satellite-Derived Estimate of City-Level Methane Emissions from Calgary, Alberta, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. TROPOMI CH4 Observation
2.3. Emission Quantification: Mass Balance Model
3. Results and Discussion
3.1. Methane Enhancements
3.2. City-Level CH4 Emission Rate and Comparisons with BU Inventories
3.3. Observational Bias
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shoemaker, J.K.; Schrag, D.P.; Molina, M.J.; Ramanathan, V. What role for short-lived climate pollutants in mitigation policy? Science 2013, 342, 1323–1324. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very strong atmospheric CH4 growth in the 4 years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Yusuf, R.O.; Noor, Z.Z.; Abba, A.H.; Hassan, M.A.A.; Din, M.F.M. CH4 emission by sectors: A comprehensive review of emission sources and mitigation methods. Renew. Sustain. Energy Rev. 2012, 16, 5059–5070. [Google Scholar] [CrossRef]
- Zhang, Y.; Gautam, R.; Pandey, S.; Omara, M.; Maasakkers, J.D.; Sadavarte, P.; Lyon, D.; Nesser, H.; Sulprizio, M.P.; Varon, D.J.; et al. Quantifying CH4 emissions from the largest oil-producing basin in the United States from space. Sci. Adv. 2020, 6, 5120. [Google Scholar] [CrossRef] [PubMed]
- Kholod, N.; Evans, M.; Pilcher, R.C.; Roshchanka, V.; Ruiz, F.; Coté, M.; Collings, R. Global CH4 emissions from coal mining to continue growing even with declining coal production. J. Clean. Prod. 2020, 256, 120489. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Qian, H.; Huang, S.; Zhang, X.; Wang, L.; Zhang, L.; Shen, M.; Xiao, X.; Chen, F.; Zhang, H.; et al. Acclimation of CH4 emissions from rice paddy fields to straw addition. Sci. Adv. 2019, 5, 9038. [Google Scholar] [CrossRef] [PubMed]
- Maasakkers, J.D.; Varon, D.J.; Elfarsdóttir, A.; McKeever, J.; Jervis, D.; Mahapatra, G.; Pandey, S.; Lorente, A.; Borsdorff, T.; Foorthuis, L.R.; et al. Using satellites to uncover large CH4 emissions from landfills. Sci. Adv. 2022, 8, 9683. [Google Scholar] [CrossRef] [PubMed]
- Cambaliza, M.O.; Shepson, P.B.; Bogner, J.E.A.N.; Caulton, D.R.; Stirm, B.; Sweeney, C.; Montzka, S.A.; Gurney, K.R.; Spokas, K.; Salmon, O.E.; et al. Quantification and source apportionment of the methane emission flux from the city of Indianapolis. Elementa 2015, 3, 000037. [Google Scholar] [CrossRef]
- Ars, S.; Vogel, F.; Arrowsmith, C.; Heerah, S.; Knuckey, E.; Lavoie, J.; Lee, C.; Pak, N.M.; Phillips, J.L.; Wunch, D. Investigation of the spatial distribution of methane sources in the greater Toronto area using mobile gas monitoring systems. Environ. Sci. Technol. 2020, 54, 15671–15679. [Google Scholar] [CrossRef]
- de Foy, B.; Schauer, J.J.; Lorente, A.; Borsdorff, T. Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater. Environ. Res. Lett. 2023, 18, 044004. [Google Scholar] [CrossRef]
- Nesser, H.; Jacob, D.J.; Maasakkers, J.D.; Lorente, A.; Chen, Z.; Lu, X.; Shen, L.; Qu, Z.; Sulprizio, M.P.; Winter, M.; et al. High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: Contributions from individual states, urban areas, and landfills. EGUsphere 2023, 1–36. [Google Scholar] [CrossRef]
- Cui, Y.Y.; Brioude, J.; McKeen, S.A.; Angevine, W.M.; Kim, S.W.; Frost, G.J.; Ahmadov, R.; Peischl, J.; Bousserez, N.; Liu, Z.; et al. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin. J. Geophys. Res. Atmos. 2015, 120, 6698–6711. [Google Scholar] [CrossRef]
- Chamberlain, S.D.; Ingraffea, A.R.; Sparks, J.P. Sourcing methane and carbon dioxide emissions from a small city: Influence of natural gas leakage and combustion. Environ. Pollut. 2016, 218, 102–110. [Google Scholar] [CrossRef]
- Hopkins, F.M.; Kort, E.A.; Bush, S.E.; Ehleringer, J.R.; Lai, C.T.; Blake, D.R.; Randerson, J.T. Spatial patterns and source attribution of urban CH4 in the Los Angeles Basin. J. Geophys. Res. Atmos. 2016, 121, 2490–2507. [Google Scholar] [CrossRef]
- Fischer, M.L.; Chan, W.R.; Delp, W.; Jeong, S.; Rapp, V.; Zhu, Z. An estimate of natural gas methane emissions from California homes. Environ. Sci. Technol. 2018, 52, 10205–10213. [Google Scholar] [CrossRef]
- Hajny, K.D.; Salmon, O.E.; Rudek, J.; Lyon, D.R.; Stuff, A.A.; Stirm, B.H.; Kaeser, R.; Floerchinger, C.R.; Conley, S.; Smith, M.L.; et al. Observations of methane emissions from natural gas-fired power plants. Environ. Sci. Technol. 2019, 53, 8976–8984. [Google Scholar] [CrossRef]
- Hopkins, F.M.; Ehleringer, J.R.; Bush, S.E.; Duren, R.M.; Miller, C.E.; Lai, C.T.; Hsu, Y.K.; Carranza, V.; Randerson, J.T. Mitigation of CH4 emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies. Earth’s Future 2016, 4, 408–425. [Google Scholar] [CrossRef]
- Ren, X.; Salmon, O.E.; Hansford, J.R.; Ahn, D.; Hall, D.; Benish, S.E.; Stratton, P.R.; He, H.; Sahu, S.; Grimes, C.; et al. CH4 emissions from the Baltimore-Washington area based on airborne observations: Comparison to emissions inventories. J. Geophys. Res. Atmos. 2018, 123, 8869–8882. [Google Scholar] [CrossRef]
- Goldsmith Jr, C.D.; Chanton, J.; Abichou, T.; Swan, N.; Green, R.; Hater, G. Methane emissions from 20 landfills across the United States using vertical radial plume mapping. J. Air Waste Manag. 2012, 62, 183–197. [Google Scholar] [CrossRef]
- Okorn, K.; Jimenez, A.; Collier-Oxandale, A.; Johnston, J.; Hannigan, M. Characterizing methane and total non-methane hydrocarbon levels in Los Angeles communities with oil and gas facilities using air quality monitors. Sci. Total Environ. 2021, 777, 146194. [Google Scholar] [CrossRef]
- Ryoo, J.M.; Iraci, L.T.; Tanaka, T.; Marrero, J.E.; Yates, E.L.; Fung, I.; Michalak, A.M.; Tadić, J.; Gore, W.; Bui, T.P.; et al. Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements. Atmos. Meas. Tech. 2019, 12, 2949–2966. [Google Scholar] [CrossRef]
- Miller, S.M.; Wofsy, S.C.; Michalak, A.M.; Kort, E.A.; Andrews, A.E.; Biraud, S.C.; Dlugokencky, E.J.; Eluszkiewicz, J.; Fischer, M.L.; Janssens-Maenhout, G.; et al. Anthropogenic emissions of CH4 in the United States. P. Natil. Acad. Sci. 2013, 110, 20018–20022. [Google Scholar] [CrossRef] [PubMed]
- Plant, G.; Kort, E.A.; Murray, L.T.; Maasakkers, J.D.; Aben, I. Evaluating urban CH4 emissions from space using TROPOMI CH4 and carbon monoxide observations. Remote Sens. Environ. 2022, 268, 112756. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Duren, R.M.; Yadav, V.; Thorpe, A.K.; Verhulst, K.; Sander, S.; Hopkins, F.; Rafiq, T.; Miller, C.E. Synthesis of methane observations across scales: Strategies for deploying a multitiered observing network. Geophys. Res. Lett. 2020, 47, 2020GL087869. [Google Scholar] [CrossRef]
- Plant, G.; Kort, E.A.; Floerchinger, C.; Gvakharia, A.; Vimont, I.; Sweeney, C. Large fugitive CH4 emissions from urban centers along the US East Coast. Geophys. Res. Lett. 2019, 46, 8500–8507. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Xing, Z.; Vollrath, C.; Hugenholtz, C.H.; Barchyn, T.E. Global observational coverage of onshore oil and gas CH4 sources with TROPOMI. Sci. Rep. 2023, 13, 16759. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.J.; Varon, D.J.; Cusworth, D.H.; Dennison, P.E.; Frankenberg, C.; Gautam, R.; Guanter, L.; Kelley, J.; McKeever, J.; Ott, L.E.; et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 2022, 22, 9617–9646. [Google Scholar] [CrossRef]
- Buchwitz, M.; Schneising, O.; Reuter, M.; Heymann, J.; Krautwurst, S.; Bovensmann, H.; Burrows, J.P.; Boesch, H.; Parker, R.J.; Somkuti, P.; et al. Satellite-derived CH4 hotspot emission estimates using a fast data-driven method. Atmos. Chem. Phys. 2017, 17, 5751–5774. [Google Scholar] [CrossRef]
- Statistics Canada. Census Profile. 2021 Census of Population. Statistics Canada Catalogue no. 98-316-X2021001. Ottawa. Released. Available online: https://www12.statcan.gc.ca/census-recensement/2021/dp-pd/prof/index.cfm?Lang=E (accessed on 29 January 2024).
- Government of Alberta Open Data: Population by Municipality. 2023. Available online: https://open.alberta.ca/opendata/population-by-municipality (accessed on 12 December 2023).
- Landgraf, J.; Lorente, A.; Langerock, B.; Sha, M.K. S5P Mission Performance Centre Methane [L2_CH4_] Readme. 2020. Available online: https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Methane-Product-Readme-File (accessed on 27 April 2022).
- Hu, H.; Hasekamp, O.; Butz, A.; Galli, A.; Landgraf, J.; Aan de Brugh, J.; Borsdorff, T.; Scheepmaker, R.; Aben, I. The operational methane retrieval algorithm for TROPOMI. Atmos. Meas. Tech. 2016, 9, 5423–5440. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; Pollard, D.F.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Gao, M.; Xing, Z. TROPOMI Daily Screening Toolkit—Version 1.0. Available online: https://github.com/MozhouGao/TROPOMI_Daily_Screening_Toolkit.git (accessed on 20 November 2023).
- Global Modeling and Assimilation Office (GMAO). MERRA-2 instM_3d_asm_Np: 3d, Monthly Mean, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [CrossRef]
- Lauvaux, T.; Giron, C.; Mazzolini, M.; d’Aspremont, A.; Duren, R.; Cusworth, D.; Shindell, D.; Ciais, P. Global assessment of oil and gas CH4 ultra-emitters. Science 2022, 375, 557–561. [Google Scholar] [CrossRef]
- Pandey, S.; Houweling, S.; Lorente, A.; Borsdorff, T.; Tsivlidou, M.; Bloom, A.A.; Poulter, B.; Zhang, Z.; Aben, I. Using satellite data to identify the methane emission controls of South Sudan’s wetlands. Biogeosciences 2021, 18, 557–572. [Google Scholar] [CrossRef]
- Scarpelli, T.R.; Jacob, D.J.; Moran, M.; Reuland, F.; Gordon, D. A gridded inventory of Canada’s anthropogenic CH4 emissions. Environ. Res. Lett. 2021, 17, 014007. [Google Scholar] [CrossRef]
- Pitt, J.R.; Lopez-Coto, I.; Hajny, K.D.; Tomlin, J.; Kaeser, R.; Jayarathne, T.; Stirm, B.H.; Floerchinger, C.R.; Loughner, C.P.; Gately, C.K.; et al. New York City greenhouse gas emissions estimated with inverse modeling of aircraft measurements. Elem. Sci. Anth. 2022, 10, 00082. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC) Greenhouse Gas Reporting Program (GHGRP)—Facility Greenhouse Gas (GHG) Data. Available online: https://open.canada.ca/data/en/dataset/a8ba14b7-7f23-462a-bdbb-83b0ef629823 (accessed on 24 November 2023).
- Huang, Y.; Kort, E.A.; Gourdji, S.; Karion, A.; Mueller, K.; Ware, J. Seasonally resolved excess urban methane emissions from the Baltimore/Washington, DC metropolitan region. Environ. Sci. Technol. 2019, 53, 11285–11293. [Google Scholar] [CrossRef] [PubMed]
- Bogner, J.E.; Spokas, K.A.; Chanton, J.P. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils. J. Environ. Qual. 2011, 40, 1010–1020. [Google Scholar] [CrossRef]
- Xu, L.; Lin, X.; Amen, J.; Welding, K.; McDermitt, D. Impact of changes in barometric pressure on landfill methane emission. Glob. Biogeochem. Cycles 2014, 28, 679–695. [Google Scholar] [CrossRef]
- Masuda, S.; Suzuki, S.; Sano, I.; Li, Y.Y.; Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant. Chemosphere 2015, 140, 167–173. [Google Scholar] [CrossRef]
- Cambaliza, M.O.L.; Bogner, J.E.; Green, R.B.; Shepson, P.B.; Harvey, T.A.; Spokas, K.A.; Stirm, B.H.; Corcoran, M. Field measurements and modeling to resolve m2 to km2 CH4 emissions for a complex urban source: An Indiana landfill study. Elem. Sci. Anth. 2017, 5, 36. [Google Scholar] [CrossRef]
- Helfter, C.; Tremper, A.H.; Halios, C.H.; Kotthaus, S.; Bjorkegren, A.; Grimmond, C.S.B.; Barlow, J.F.; Nemitz, E. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmos. Chem. Phys. 2016, 16, 10543–10557. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Crosman, E.T.; Jacques, A.A.; Fasoli, B.; Leclair-Marzolf, L.; Horel, J.; Bowling, D.R.; Ehleringer, J.R.; Lin, J.C. Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform. Atmos. Environ. 2018, 187, 9–23. [Google Scholar] [CrossRef]
- City of Calgary, Primary Natural Gas Usage. Available online: https://data.calgary.ca/Environment/Primary-Natural-Gas-Usage/s5g9-8sgf (accessed on 17 November 2023).
- Government of Alberta: Alberta Air Data Warehouse. Available online: https://www.alberta.ca/alberta-air-data-warehouse (accessed on 17 November 2023).
Data Source | Emission Rate (t CH4/d) | Year |
---|---|---|
EDGARv8.0 | 31.6 | 2020 |
EDGARv8.0 | 38.2 | 2021 |
EDGARv8.0 | 34.9 | 2022 |
EDGARv8.0 | 34.9 | 2020–2022 |
Gridded NIR | 48.3 | 2018 |
GHGRP 1 | 20.3 | 2020–2021 |
This work | 215.4 ± 132.8 | 2020–2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Barchyn, T.E.; Vollrath, C.; Gao, M.; Hugenholtz, C. Satellite-Derived Estimate of City-Level Methane Emissions from Calgary, Alberta, Canada. Remote Sens. 2024, 16, 1149. https://doi.org/10.3390/rs16071149
Xing Z, Barchyn TE, Vollrath C, Gao M, Hugenholtz C. Satellite-Derived Estimate of City-Level Methane Emissions from Calgary, Alberta, Canada. Remote Sensing. 2024; 16(7):1149. https://doi.org/10.3390/rs16071149
Chicago/Turabian StyleXing, Zhenyu, Thomas E. Barchyn, Coleman Vollrath, Mozhou Gao, and Chris Hugenholtz. 2024. "Satellite-Derived Estimate of City-Level Methane Emissions from Calgary, Alberta, Canada" Remote Sensing 16, no. 7: 1149. https://doi.org/10.3390/rs16071149
APA StyleXing, Z., Barchyn, T. E., Vollrath, C., Gao, M., & Hugenholtz, C. (2024). Satellite-Derived Estimate of City-Level Methane Emissions from Calgary, Alberta, Canada. Remote Sensing, 16(7), 1149. https://doi.org/10.3390/rs16071149