Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from Sentinel-2 Images—A Case Study of Lake Honghu
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Image Data
2.2.2. Measured Data
3. Method
3.1. Overall Technical Process
3.2. Sentinel-2 MSI Data Preprocessing
3.2.1. Atmospheric Correction of Sentinel-2 MSI Data
3.2.2. Lake Boundary Data Extraction
3.2.3. Visual Interpretation of Aquatic Vegetation Characteristics
3.2.4. Sample Production
3.3. Deep-Learning-Based Training of Aquatic Vegetation Models
3.4. Precision Evaluation
3.4.1. Atmospheric Correction Precision
3.4.2. Model Training Precision
3.4.3. Model Prediction Precision
4. Results
4.1. Evaluation of Atmospheric Correction Precision
4.2. Model Training and Prediction Precision
4.3. Evaluation of Model Precision Based on Measured Data
4.4. Spatial and Temporal Changes in Aquatic Vegetation in Lake Honghu, 2017–2023
5. Discussion
5.1. Applicability of the Model
5.1.1. Applicability of Single-Aquatic-Vegetation-Type Lakes
5.1.2. Applicability in Complex Situations
5.2. Comparison with Other Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global Loss of Aquatic Vegetation in Lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Pu, J.; Song, K.; Lv, Y.; Liu, G.; Fang, C.; Hou, J.; Wen, Z. Distinguishing Algal Blooms from Aquatic Vegetation in Chinese Lakes Using Sentinel 2 Image. Remote Sens. 2022, 14, 1988. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, C.; Li, H.; Liu, J.; Jiang, T.; Yan, D.; Tong, J.; Dong, L. Review on Ecological Response of Aquatic Plants to Balanced Harvesting. Sustainability 2022, 14, 12451. [Google Scholar] [CrossRef]
- Wang, Z.H.; Xin, C.L.; Sun, Z.; Luo, J.H.; Ma, R.H. Automatic Extraction Method of Aquatic Vegetation Types in Small Shallow Lakes Based on Sentinel-2 Data: A Case Study of Cuiping Lake. Remote Sens. Inf. 2019, 34, 132–141. [Google Scholar] [CrossRef]
- Zou, W.; Yuan, L.; Zhang, L. Analyzing the Spectral Response of Submerged Aquatic Vegetation in a Eutrophic Lake, Shanghai, China. Ecol. Eng. 2013, 57, 65–71. [Google Scholar] [CrossRef]
- Luo, J.; Yang, J.; Duan, H.; Sun, Z.; Xin, Y. Research progress of aquatic vegetation remote sensing in shallow lakes. Natl. Remote Sens. Bull. 2022, 26, 68–76. [Google Scholar] [CrossRef]
- Silva, T.S.F.; Costa, M.P.F.; Melack, J.M.; Novo, E.M.L.M. Remote Sensing of Aquatic Vegetation: Theory and Applications. Environ. Monit. Assess. 2007, 140, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Albright, T.P.; Ode, D.J. Monitoring the Dynamics of an Invasive Emergent Macrophyte Community Using Operational Remote Sensing Data. Hydrobiologia 2011, 661, 469–474. [Google Scholar] [CrossRef]
- Ackleson, S.; Klemas, V. Remote Sensing of Submerged Aquatic Vegetation in Lower Chesapeake Bay: A Comparison of Landsat MSS to TM Imagery. Remote Sens. Environ. 1987, 22, 235–248. [Google Scholar] [CrossRef]
- Cheruiyot, E.K.; Mito, C.; Menenti, M.; Gorte, B.; Koenders, R.; Akdim, N. Evaluating MERIS-Based Aquatic Vegetation Mapping in Lake Victoria. Remote Sens. 2014, 6, 7762–7782. [Google Scholar] [CrossRef]
- Hunter, P.D.; Gilvear, D.J.; Tyler, A.N.; Willby, N.J.; Kelly, A. Mapping Macrophytic Vegetation in Shallow Lakes Using the Compact Airborne Spectrographic Imager (CASI). Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 717–727. [Google Scholar] [CrossRef]
- Feng, L.; Hou, X.; Liu, J.; Zheng, C. Unrealistic Phytoplankton Bloom Trends in Global Lakes Derived from Landsat Measurements. EarthArXiv 2020, preprint. [Google Scholar] [CrossRef]
- Dai, Y.; Feng, L.; Hou, X.; Tang, J. An automatic Classification Algorithm for Submerged Aquatic Vegetation in Shallow Lakes Using Landsat Imagery. Remote Sens. Environ. 2021, 260, 112459. [Google Scholar] [CrossRef]
- Malthus, T. Chapter 9. Bio-Optical Modeling and Remote Sensing of Aquatic Macrophytes. In Bio-optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Piaser, E.; Villa, P. Evaluating Capabilities of Machine Learning Algorithms for Aquatic Vegetation Classification in Temperate Wetlands Using Multi-Temporal Sentinel-2 Data. Int. J. Appl. Earth Obs. Geoinform. 2023, 117, 103202. [Google Scholar] [CrossRef]
- Pearson, R.M.; Collier, C.J.; Brown, C.J.; Rasheed, M.A.; Bourner, J.; Turschwell, M.P.; Sievers, M.; Connolly, R.M. Remote estimation of aquatic light environments using machine learning: A new management tool for submerged aquatic vegetation. Sci. Total Environ. 2021, 782, 146886. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A.; Jacoby, C. Classification of Submerged Aquatic Vegetation in Black River Using Hyperspectral Image Analysis. GEOMATICA 2014, 68, 169–182. [Google Scholar] [CrossRef]
- Martínez-Santos, P.; Aristizábal, H.; Díaz-Alcaide, S.; Gómez-Escalonilla, V. Predictive mapping of aquatic ecosystems by means of support vector machines and random forests. J. Hydrol. 2021, 595, 126026. [Google Scholar] [CrossRef]
- Singh, G.; Reynolds, C.; Byrne, M.; Rosman, B. A Remote Sensing Method to Monitor Water, Aquatic Vegetation, and Invasive Water Hyacinth at National Extents. Remote Sens. 2020, 12, 4021. [Google Scholar] [CrossRef]
- Patel, M.; Jernigan, S.; Richardson, R.; Ferguson, S.; Buckner, G. Autonomous Robotics for Identification and Management of Invasive Aquatic Plant Species. Appl. Sci. 2019, 9, 2410. [Google Scholar] [CrossRef]
- Piaser, E.; Villa, P. Comparing Machine Learning Techniques for Aquatic Vegetation Classification Using Sentinel-2 Data. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022. [Google Scholar]
- Yao, F.; Wang, J.; Wang, C.; Crétaux, J.-F. Constructing Long-Term High-Frequency Time Series of Global Lake and Reservoir Areas Using Landsat Imagery. Remote Sens. Environ. 2019, 232, 111210. [Google Scholar] [CrossRef]
- Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists. Remote Sens. 2021, 13, 623. [Google Scholar] [CrossRef]
- Rouse, R.; Haas, J.; Deering, D.W. ’aper A 20 Monitoring Vegetation Systems in The Great Plains with ERTS. 1974. Available online: https://api.semanticscholar.org/CorpusID:133358670 (accessed on 23 February 2024).
- Xu, L.; Zhang, S.; He, Z.; Guo, Y. The comparative study of three methods of remote sensing image change detection. In Proceedings of the 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; pp. 1–4. [Google Scholar]
- Valta-Hulkkonen, K.; Partanen, S.; Kanninen, A. Remote Sensing as a Tool in the Aquatic Macrophyte Mapping of a Eutrophic Lake: A Comparison Between Visual and Digital Classification. In Proceedings of the ScanGIS’2003—The 9th Scandinavian Research Conference on Geographical Information Science, Espoo, Finland, 4–6 June 2003. Proceedings DBLP, 2003. [Google Scholar]
- Oyama, Y.; Matsushita, B.; Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM + shortwave infrared bands. Remote Sens. Environ. 2015, 157, 35–47. [Google Scholar] [CrossRef]
- Luo, J.; Ni, G.; Zhang, Y.; Wang, K.; Shen, M.; Cao, Z.; Qi, T.; Xiao, Q.; Qiu, Y.; Cai, Y.; et al. A New Technique for Quantifying Algal Bloom, Floating/Emergent and Submerged Vegetation in Eutrophic Shallow Lakes Using Landsat Imagery. Remote Sens. Environ. 2023, 287, 113480. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying Remote Sensing Techniques to Monitoring Seasonal and Interannual Changes of Aquatic Vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Y.; Chen, X.; Zhang, H.; Liu, C.; Duan, Q. Estimating the Aquatic-Plant Area on a Pond Surface Using a Hue-saturation-Component Combination and an Improved Otsu Method. Comput. Electron. Agric. 2021, 188, 106372. [Google Scholar] [CrossRef]
- Rotta, L.H.D.S. Estimation of Submerged Aquatic Vegetation Height and Distribution in Nova Avanhandava Reservoir (São Paulo State, Brazil) Using Bio-Optical Modeling. 2015. Available online: http://hdl.handle.net/11449/123843 (accessed on 23 February 2024).
- Huber, S.; Hansen, L.B.; Nielsen, L.T.; Rasmussen, M.L.; Sølvsteen, J.; Berglund, J.; von Friesen, C.P.; Danbolt, M.; Envall, M.; Infantes, E.; et al. Novel Approach to Large-Scale Monitoring of Submerged Aquatic Vegetation: A Nationwide Example from Sweden. Integr. Environ. Assess. Manag. 2022, 18, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Faza, S.; Nababan, E.B.; Efendi, S.; Basyuni, M.; Rahmat, R.F. An Initial Study of Deep Learning for Mangrove Classification. IOP Conf. Ser. Mater. Sci. Eng. 2018, 420, 012093. [Google Scholar] [CrossRef]
- Guo, M.; Yu, Z.; Xu, Y.; Huang, Y.; Li, C. ME-Net: A Deep Convolutional Neural Network for Extracting Mangrove Using Sentinel-2A Data. Remote Sens. 2021, 13, 1292. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, F.; Li, J.; Xle, Y.; Zhang, B. Aquatic vegetation extraction of Yugiao Reservoir Based on Sentinel-2 image feature optimizati. Ecol. Sci. 2023, 42, 40. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Yu, Z. Classification of Honghe Wetland Remote Sensing lmage Based on Random Forests. Geomat. Spat. Inf. Technol. 2014, 37, 4. [Google Scholar]
- Liu, Z.Y.-C.; Chamberlin, A.J.; Tallam, K.; Jones, I.J.; Lamore, L.L.; Bauer, J.; Bresciani, M.; Wolfe, C.M.; Casagrandi, R.; Mari, L.; et al. Deep Learning Segmentation of Satellite Imagery Identifies Aquatic Vegetation Associated with Snail Intermediate Hosts of Schistosomiasis in Senegal, Africa. Remote Sens. 2022, 14, 1345. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, R.; Jia, M.; Cheng, L.; Zhao, C.; Li, H.; Wang, Z. Accurate and Rapid Extraction of Aquatic Vegetation in the China Side of the Amur River Basin Based on Landsat Imagery. Remote Sens. 2024, 16, 654. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tang, J.W.; Li, T.J.; Zhou, H. Key Technologies of water spectra measurements with above-water method. Ocean. Technol 2012, 31, 72–76. [Google Scholar] [CrossRef]
- Merwade, V.M. An Automated GIS Procedure for Delineating River and Lake Boundaries. Trans. GIS 2007, 11, 213–231. [Google Scholar] [CrossRef]
- Cao, M.; Qing, S.; Jin, E.; Hao, Y.; Zhao, W. A Spectral Index for the Detection of Algal Blooms Using Sentinel-2 Multispectral Instrument (MSI) Imagery: A Case Study of Hulun Lake, China. Int. J. Remote Sens. 2021, 42, 4514–4535. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote Sensing Imagery in Vegetation Mapping: A Review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Zhang, X. On the Estimation of Biomass of Submerged Vegetation Using Landsat Thematic Mapper (TM) Imagery: A Case Study of the Honghu Lake, PR China. Int. J. Remote Sens. 1998, 19, 11–20. [Google Scholar] [CrossRef]
- Chen, X.; Weng, J.; Luo, W.; Lu, W.; Wu, H.; Xu, J.; Tian, Q. Sample Balancing for Deep Learning-Based Visual Recognition. IEEE Trans. Neural Networks Learn. Syst. 2020, 31, 3962–3976. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Sharifi, A.; Mahdipour, H.; Moradi, E.; Tariq, A. Agricultural Field Extraction with Deep Learning Algorithm and Satellite Imagery. J. Indian Soc. Remote Sens. 2022, 50, 417–423. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, R.; Wang, L.; Zhong, Y.; Cao, L. D-Resunet: Resunet and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-Imbalanced NLP Tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 465–476. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017. [Google Scholar] [CrossRef]
- Luo, J.; Ma, R.; Duan, H.; Hu, W.; Zhu, J.; Huang, W.; Lin, C. A New Method for Modifying Thresholds in the Classification of Tree Models for Mapping Aquatic Vegetation in Taihu Lake with Satellite Images. Remote Sens. 2014, 6, 7442–7462. [Google Scholar] [CrossRef]
- Wu, H.; Han, H.; Zhi, Y.; Deng, Z.; Zhou, J.; Li, W.; Yuan, L.; Cao, Y. Enclosure study on the limiting factors of submerged macrophyte growth in restored sites of Lake Honghu. Plant Sci. J. 2023, 41, 583–593. [Google Scholar] [CrossRef]
- Xinxin, S.; Xiaobin, C.; Zhi, W.; Enhua, L.; Xuelei, W. Community change of dominant submerged macrophyte in Lake Honghu since 1950s. J. Lake Sci. 2016, 28, 859–867. [Google Scholar] [CrossRef]
- Four departments jointly issued assessment index scoring rules for the Yangtze River Basin water ecology “score”. Environ. Monit. Manag. Technol. 2023, 35, 6.
- Wang, S.; Wang, W.; Chen, J.; Zhang, B.; Zhao, L.; Jiang, X. Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms—A Case Study of Lake Taihu, China. Water 2020, 12, 2278. [Google Scholar] [CrossRef]
- Shen, L.; Xu, H.; Guo, X. Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework. Sensors 2012, 12, 7778–7803. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.A.; Fan, C. Optical Spectra of Phytoplankton Cultures for Remote Sensing Applications: Focus on Harmful Algal Blooms. Int. J. Environ. Sci. Dev. 2013, 4, 94–98. [Google Scholar] [CrossRef]
- Baetens, L.; Desjardins, C.; Hagolle, O. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sens. 2019, 11, 433. [Google Scholar] [CrossRef]
RMSE | MRE | R2 | |
---|---|---|---|
Emergent vegetation | 0.13 | 20.03 | 0.84 |
Floating-leaved vegetation | 0.15 | 25.61 | 0.76 |
Submerged vegetation | 0.19 | 39.00 | 0.69 |
Dates | Assessment Indicators | Submerged Vegetation | Floating-Leaved Vegetation | Emergent Vegetation |
---|---|---|---|---|
31 July 2021 | Recall | / | 0.83 | 0.91 |
Precision | / | 0.79 | 0.86 | |
F1 score | / | 0.76 | 0.81 | |
RE | / | 20.64% | 14.45% | |
28 April 2017 | Recall | 0.76 | / | 0.90 |
Precision | 0.80 | / | 0.83 | |
F1 score | 0.81 | / | 0.90 | |
RE | 19.70% | / | 16.15% |
Recall | Precision | F1 Score | RE | |
---|---|---|---|---|
Background | 0.99 | 0.99 | 0.99 | 0.29% |
Emergent vegetation | 0.98 | 0.95 | 0.97 | 3.61% |
Recall | Precision | F1 Score | RE | |
---|---|---|---|---|
Background | 0.99 | 0.99 | 0.99 | 0.57% |
Submerged vegetation | 0.95 | 0.90 | 0.92 | 9.49% |
Floating-leaved vegetation | 0.80 | 0.94 | 0.87 | 5.73% |
Emergent vegetation | 0.74 | 0.83 | 0.65 | 7.47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Li, R.; Shen, Q.; Yao, Y.; Shao, Y.; Zhou, Y.; Li, W.; Li, J.; Zhang, Y.; Liu, M. Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from Sentinel-2 Images—A Case Study of Lake Honghu. Remote Sens. 2024, 16, 867. https://doi.org/10.3390/rs16050867
Gao H, Li R, Shen Q, Yao Y, Shao Y, Zhou Y, Li W, Li J, Zhang Y, Liu M. Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from Sentinel-2 Images—A Case Study of Lake Honghu. Remote Sensing. 2024; 16(5):867. https://doi.org/10.3390/rs16050867
Chicago/Turabian StyleGao, Hangyu, Ruren Li, Qian Shen, Yue Yao, Yifan Shao, Yuting Zhou, Wenxin Li, Jinzhi Li, Yuting Zhang, and Mingxia Liu. 2024. "Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from Sentinel-2 Images—A Case Study of Lake Honghu" Remote Sensing 16, no. 5: 867. https://doi.org/10.3390/rs16050867
APA StyleGao, H., Li, R., Shen, Q., Yao, Y., Shao, Y., Zhou, Y., Li, W., Li, J., Zhang, Y., & Liu, M. (2024). Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from Sentinel-2 Images—A Case Study of Lake Honghu. Remote Sensing, 16(5), 867. https://doi.org/10.3390/rs16050867