Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects
Abstract
:1. Introduction
1.1. Aim and Scope of This Systematic Literature Review
- Present an overview of the current knowledge on using remote sensing for mapping and assessing peatland characteristics such as vegetation cover, hydrology, and carbon storage;
- Evaluate the capabilities and limitations of different remote sensing platforms for peatland applications, including satellite, airborne, UAV, in situ ground-based, and multiple platforms;
- Identifying the key challenges and opportunities for remote sensing monitoring and management of peatland dynamics, such as land cover/land use change, hydrological fluctuations, and greenhouse gas emissions;
- Synthesise this review’s findings and provide recommendations for future research and remote sensing applications in peatland research.
1.2. Current Literature Reviews
2. Materials and Methods
2.1. Identification of Relevant Literature
2.2. The Database and Search Criteria
2.3. Screening the Literature
2.4. Extracting Data and Synthesising Results
3. Current Remote Sensing Data
4. Remote Sensing Platforms Used in Peatland Research
4.1. Satellite-Based Remote Sensing
4.1.1. Peatland Mapping
4.1.2. Vegetation Dynamics and Productivity Monitoring
4.1.3. Carbon Stock Estimation
4.1.4. Monitoring Restoration Efforts and Success
4.1.5. Monitoring Peatland Fire Dynamics
4.1.6. Challenges and Limitations
References | Peatland Type * | Peatland Status | Dominant Vegetation | Platform | Sensor/Product | Indices | Sensing Type | Multi/Hyper | Application |
---|---|---|---|---|---|---|---|---|---|
[14] | Peatland | Disturbed | No vegetation (bare peat) | Landsat | TM, OLI | NDVI | Passive | Multi | Change Detection |
[60] | Bog | Disturbed | Sphagnum spp., other mosses, lichen, Ericaceous shrubs, sedges, grasses | Sentinel-1 | C-band SAR | NA | Active | NA | Condition assessment |
[11] | Bog | Restored | NA | ERS1, ERS2, Sentinel-1 | C-band SAR | NA | Active | NA | |
[9] | Peatland | Natural | Sphagnum spp., Juniperus brevifolia | Sentinel-2, Rapideye | NA | NA | Passive | NA | Hydrologic services estimation |
[80] | Bog | Natural | Sphagnum spp., Pinus sylvestris, Calluna vulgaris, Eriophorum vaginatum, Chamaedaphne calyculata, Andromeda polifolia, Rhynchospora alba, Ledum palustre, Oxycoccus microcarpus, Oxycoccus palustris | Landsat, Terra | TM/MOD11A1 | NDVI, SMI, Albedo | Passive | Multi | Monitoring WTD dynamics |
[81] | Peatland | Natural | Mosses, sedges, shrubs, sparse dwarf pines, shrubs, black spruce, mosses, downy willows, and dwarf birch, Alder, willow | Landsat, Terra | MOD09GA | NA | Passive | Multi | |
[76] | Peatland | Restored | NA | ENVISAT | ASAR C-Band | NA | Active | NA | |
[78] | Fen | Disturbed | Grass | Sentinel-1 | C-band SAR | NA | Active | NA | |
[82] | Peatland | Restored | NA | Sentinel-1, Sentinel-2 | C-Band GRD/MSI | NDWI, MNDWI | Mixed | Multi | |
[39] | Peatland | NA | NA | RADARSAT-2, Sentinel-1, ALOS-2 | C-band, L-band SAR | NA | Active | NA | Peatland classification |
[65] | Peatland | NA | NA | Landsat, RADARSAT-2, Sentinel-1 | MSI/C-band, L-band SAR | NDVI, NDWI, Albedo, LST | Mixed | Multi | |
[68] | Peatland | NA | NA | RapidEye | NA | RENDVI, RVI, GNDVI | Passive | Multi | |
[66] | Peatland | NA | NA | Sentinel-1, Sentinel-2 | Ground Range Detected (GRD) | NDVI, EVI, DVI, RENDVI, NDWI | Mixed | Multi | |
[83] | Peatland | Disturbed | NA | Radarsat-2, Landsat | SAR/OLI | NA | Mixed | Multi | |
[37] | Mire | Disturbed | Molinia caerulea, Potentilla erecta | Terra | MOD9A1, MOD13Q1, MOD15A2, MOD17A2 | NDVI, EVI, LAI, fPAR, | Passive | Multi | Peatland CO2 gas fluxes |
[72] | Peatland | Natural | Sphagnum fuscum, Chamaedaphne calyculata, Picea mariana, Eriophorum vaginatum, Dicranum fuscescens Turner, Tomentypnum nitens, Larix laricina, Betula pumila, Menyanthes trifoliata, Carex lasiocarpa | Landsat | OLI | EVI | Passive | Multi | |
[63] | Peatland | Natural | Carex rostrata, Betula nana, Eriophorium angustifolium, Sphanum fuscum, S. angustifolium, S. riparium, S. fallax, S. balticum, S. Lindbergii, S. majus, Empetrum hermaphroditum, Menyanthes trifoliata, Eriophorum vaginatum, Vaccinium oxycoccos, Andromeda polifolia, Trichophorum caespitosum, Carex chordorrhiza, Salix phylicifolia. Betula nana, Salix lapponum, | Terra, Sentinel-2 | MOD11A1, MYD11A1/MSI | EVI, NDWI | Passive | Multi | |
[62] | Bog | Disturbed | Molinia caerulea, Potentilla erecta | Terra | MODIS9A1 | NDVI | Passive | Multi | |
[84] | Bog | Disturbed | Scirpus cespitosus, Eriophorum vaginatum, Molinia caerulea, Narthecium ossifragum, Sphagnum spp. | Terra | MOD15A2, MODIS9A1 | NDVI, fPAR | Passive | Multi | |
[85] | Peatland | Disturbed | Picea mariana, Salix spp., Alnus alnobetula | Landsat | TM&ETM+&OLI | NDVI | Passive | Multi | Peatland degradation |
[86] | Bog | Natural | Sphagnum spp., Pinus sylvestris | Sentinel-1 | C-band SAR | NA | Active | NA | |
[87] | Bog | Disturbed | NA | Geoeye-1 | NA | NA | Passive | Multi | |
[12] | Bog | Natural | Sphagnum spp., Pinus sylvestris | Terra | MOD09Q1 | NDVI | Passive | Multi | Peatland degradation and hydroclimatic conditions |
[88] | Peatland | Natural | Sphagnum spp, Carex spp., Pleuorzium schreberi, Hylocomium splendens, | ALOS PALSAR, ERS-1 or 2, Landsat 5 TM | SAR L-band, C-band, ETM+ | NA | Mixed | Multi | Peatland mapping |
[31] | Peatland | Natural | Sphagnum spp., Carex spp., | Sentinel-2 | MSI | NDVI, EVI, NDWI | Passive | Multi | |
[69] | Bog | Disturbed | NA | Sentinel-1, RADARSAT-2 | C-band | NA | Active | NA | |
[89] | Peatland | NA | NA | Landsat | OLI | NA | Passive | Multi | |
[90] | Peatland | NA | NA | Sentinel-1 | C-band SAR | Coherence Assessment | Active | NA | |
[91] | Peatland | NA | NA | RapidEye | NA | RENDVI, NDVI, GNDVI, Red Edge, | Passive | Multi | |
[61] | Bog | Disturbed | Sphagnum spp., shrub, grass, rushes | Sentinel-1 | C-Band SAR | NA | Active | NA | |
[74] | Bog | Disturbed | Willow herb, small reed, and small birch reed communities | Spot-5, Spot-6, Landsat-7 ETM+ | HRG/ETM+ | NA | Passive | Multi | Peatland monitoring |
[33] | Bog | Disturbed | Eriophorum vaginatum, Sphagnum spp., Molinia spp. dominated, dwarf shrubs | Sentinal-1 | NA | NA | Active | NA | |
[92] | Bog | Natural | Pinus sylvestris ‘Nana’, Ledum palustre, Vaccinium uliginosum, Calluna vulgaris, Empetrum nigrum, Sphagnum spp. | Terra | MODIS LST, MOD11A1 | NA | Passive | Multi | |
[93] | Bog | Disturbed | NA | Sentinel-1 | C-band SAR | NA | Active | NA | |
[70] | Bog | Natural | Sphagnum spp., | Terra | MOD13Q1 | EVI | Passive | Multi | Vegetation phenology |
[71] | Peatland | Natural | Mosses, sedges, shrubs | QuickBird, WorldView-2 and WorldView-3 | NA | NDVI, NDVI, RGI, EVI, EVI, SAVI, MSAVI | Passive | Multi | Peatland productivity |
[67] | Bog | Natural | Sphagnum spp., | Terra | MOD13Q1 | NDVI | Passive | Multi | |
[73] | Bog | NA | Calluna vulgaris, Empetrum nigrum, Vaccinium uliginosum, Rubus chamaemorus, Dicranum scoparium, Hylocomium splendens, Pleurozium schreberi, Racomitrium lanuginosum, Sphagnum spp., Cladonia spp., Carex rariflora | Terra | MODIS NDVI | NDVI | Passive | Multi | |
[94] | Peatland | Disturbed | Sedge, sedge–moss, reed, grass | Sentinel 2, Sentinel 3, Terra | MSI/OLCI, SLSTR/LST/MOD09GQ, MOD11A1 | NDVI, NDII, APAR, LAI | Passive | Multi | |
[19] | Peatland | Natural | Moss, grass, vascular plants, shrub | Landsat | NA | NDVI | Passive | Multi | |
[95] | Fen | Natural | Sphagnum teres, Drosera rotundifolia, Carex limosa, Oxycoccus palustris | Terra and Aqua | MOD13Q1/MYD13Q1 | NDVI | Passive | Multi | |
[96] | Bog | Restored | NA | Terra | MOD11-C2, MODIS LST, MCD43A3 | NA | Passive | Multi | Peatland restoration |
[20] | Bog | Restored | Bare peat, scrub, grass, sedge, Calluna Vulgaris, Pteridinium spp. | Terra | MOD13A2, MCD43A3 | NDVI, EVI | Passive | Multi | |
[59] | Peatland | NA | NA | Terra | NA | EVI, SAVI, NDWI, LST | Passive | Multi | Restoration monitoring |
[64] | Bog | Restored | Eriophorum angustifolium, Sphagnum capillifolium, Cladonia portentosa, Calluna vulgaris, Erica tetralix, Trichophorum germanicum, Molinia caerulea, Polytrichum commune, Dicranum scoparium, Pleurozium schreberi | Terra | MOD17A2H, MOD09A1 | NDWI, NDVI, EVI | Passive | Multi | |
[97] | Bog | Disturbed | Sphagnum spp., Pinus contorta, Betula papyrifera, Betula pendula | Terra | MOD13Q1, MOD16A2 ET | NDVI | Passive | Multi | |
[58] | Peatland | Restored | Pine, willow–birch, bare peat | Landsat, Sentinel-2, Spot-5 | ETM+, MSI, HRG | RED–NIR, NIR–SWIR, SWIR2–SWIR | Passive | Multi | Fire risk reduction and restoration monitoring |
[40] | Mire | Disturbed | Molinia caerulea, Potentilla erecta | Landsat, Sentinel-2, Spot-5, Spot-6 | ETM+, OLI, MSI, HRG | RED–NIR, NIR–SWIR2, SWIR2–SWIR | Passive | Multi | |
[79] | Peatland | NA | NA | Sentinel-1, Sentinel-2 | C-Band SAR/MSI | NDVI, NDII | Mixed | Multi | Wildfire dynamics |
4.2. Airborne-Based Remote Sensing
4.2.1. Peatland Classification and Mapping
4.2.2. Monitoring Peatland Dynamics, Degradation, and Hydrological Changes
4.2.3. Peatland Carbon Stock Assessment
4.2.4. Challenges and Limitations
Reference | Peatland Type * | Peatland Status | Dominant Vegetation | Active/Passive | Data Type | Application |
---|---|---|---|---|---|---|
[42] | Fen | Disturbed | Campylium stellatum, Hamatocaulis vernicosus, Limprichtia cossonii, Fissidens adianthoides, Scorpidium scorpioides, Carex spp., Comarum palustre., Menyanthes trifoliata., Thelypteris palustris. | Mixed | Hyperspectral & LiDAR | Classification and mapping |
[24] | Peatland | Disturbed | Sphagnum spp., Alnus incana, Ilex (Nemopanthus) mucronatus, Rhododendron canadense, Viburnum nudum. | Active | LiDAR | |
[25] | Bog | NA | Empetrum nigrum, Calluna vulgaris, Betula nana, Sphagnum spp., Andromeda polifolia, Eriophorum vaginatum. | Mixed | RGB & LiDAR | |
[45] | Bog | NA | Calluna vulgaris, Erica tetralix, Myrica gale, Vaccinium myrtillus, Rhyncospera alba, Eriophorum spp., Sphagnum spp., Andromeda polifolia. | Passive | Hyperspectral | |
[41] | Peatland | NA | NA | Passive | NA | |
[17] | Bog | Disturbed | Pinus mugo, Sphagnum spp. | Mixed | LiDAR & CIR & RGB | |
[102] | Peatland | NA | NA | Active | LiDAR | |
[44] | Bog | Disturbed | NA | Mixed | Multispectral & LiDAR | |
[104] | Bog | Disturbed | NA | Mixed | Gamma-ray & Radar | |
[29] | Bog | Natural | NA | Mixed | Gamma-ray & LiDAR | |
[43] | Bog | NA | Sphagnum spp., Typha angustifolia, Chamaedaphne calyculata, Rhododendron groenlandicum, Kalmia angustifolia, Vaccinium myrtilloides, Eriophorum vaginatum, Picea mariana, Betula populifolia, Larix laricina. | Passive | Hyperspectral | CO2 fluxes |
[105] | Peatland | NA | NA | Active | NA | |
[106] | Bog | NA | Sphagnum spp., | Active | LiDAR | Peatland hydrology and vegetation dynamics |
[107] | Fen | NA | Sphagnum spp., brown moss, feathermoss, herb, graminoid, horsetail, shrub. | Active | LiDAR | |
[108] | Peatland | NA | Sphagnum spp., shrub. | Active | NIR & Thermal & LiDAR | |
[109] | Bog | Disturbed | Erica tetralix, Calluna vulgaris, Ericaceae spp., Eriophorum vaginatum, Trichophorum cespitosum, Cyperaceae spp., Sphagnum spp. | Passive | RGB | |
[99] | Peatland | Natural | Caricetum appropinquatae, Caricetum gracilis, Glycerietum maximae, Phragmitetum australis, alder, willow encroachments., | Active | LiDAR | |
[98] | Bog | Disturbed | Gaultheria shallon, Pinus contorta, Tsuga heterophylla, Rhododendron groenlandicum, Sphagnum spp. | Active | LiDAR | |
[101] | NA | Disturbed | Phragmites australis | Active | NA | |
[110] | Peatland | Disturbed | NA | Active | LiDAR | Peat estimation |
[109] | Bog | Disturbed | Erica tetralix, Calluna vulgaris, Ericaceae spp., Eriophorum vaginatum, Trichophorum cespitosum, Cyperaceae spp., Sphagnum spp. | Passive | RGB | |
[100] | Peatland | NA | Sphagnum spp., shrub. | Active | LiDAR | Peatland restoration |
[111] | Peatland | Disturbed | Populus tremuloides, Populus balsamifera, Betula papyrifera, Picea mariana, Pinus banksiana, Prunus virginiana, Alnus crispa, Amelanchier alnifolia, Symphoricarpos albus, Ledum groenlandicum Oeder, Betula pumila, Salix spp. | Active | LiDAR | Peatland wildfire vulnerability and monitoring |
[26] | Peatland | Disturbed | Populus tremuloides, Populus balsamifera, Picea glauca, P. mariana, Betula glandulosa, Rhododendron groenlandicum, Sphagnum spp. | Active | LiDAR | |
[103] | Peatland | NA | Sphagnum spp., Typha angustifolia, Chamaedaphne calyculata, Rhododendron groenlandicum, Kalmia angustifolia, Vaccinium myrtilloides, Eriophorum vaginatum, Picea mariana, Betula populifolia, Larix laricina. | Passive | Hyperspectral | |
[112] | Bog | Natural | Sphagnum spp., vascular plants. | Passive | Hyperspectral | Hyperspectral validation/RS techniques and data analysis |
[113] | Fen | Natural | Sphagnum spp., Eriophorum angustifolium, Carex spp., Oxycoccus palustris, Typha latifilia, | Passive | Hyperspectral | |
[114] | Fen | Natural | Sphagnum spp., Eriophorum angustifolium, Carex spp., Oxycoccus palustris, Typha latifilia, | Passive | Hyperspectral | Vegetation analysis and modelling |
[115] | Peatland | NA | Eriophorum vaginatum | Passive | Hyperspectral |
4.3. UAV-Based Remote Sensing
4.3.1. Mapping Carbon Fluxes and Stocks
4.3.2. Monitoring of Peatland Hydrology
4.3.3. Assessing Vegetation Structure and Disturbance Impacts
4.3.4. Limitations and Challenges
Reference | Peatland Type * | Peatland Status | Dominant Vegetation | UAV | Sensors | Spectral Range | Spatial Resolution | Indices/Products | Applications |
---|---|---|---|---|---|---|---|---|---|
[125] | Mire | Disturbed | Betula nana, Empetrum hermaphroditum, Sphagnum spp., Carex spp. | Robota fixed wing | Panasonic Lumix-GM1 | RGB | >1 cm | RGB image | Cover classification map |
[13] | Peatland | NA | Phragmites australis | Matrice 600 Pro | micro–Compact Airborne Spectrographic Imager (µCASI) | 401–996 | 5 cm | Digital Elevation Model (DEM) | Ecological monitoring |
[124] | Bog | Disturbed | Eriophorum spp., Calluna vulgaris, Sphagnum spp. | Wingspan Fixed-Wing | Panasonic Lumix DMC-LX7 | RGB | 4.5 cm | RGB image | Mapping and ecological classification |
[32] | Bog | Disturbed | Picea mariana, Rhododendron groelandicum, Oxycoccus microcarpus, Salix spp., Sphagnum spp. | Aeryon Skyranger | HDZoom30 RGB | RGB | 2 cm | Digital Terrain Model (DTM) | Mapping microtopography and WTD |
[122] | Bog | NA | Sphagnum spp., Vaccinium myrtillus, Pinus mungo Turra | Mavic Pro, MikroKopter ARF XL | FLIR DUO R dual-sensor RGB/thermal, Tetracam µ-MCA Snap 6 | 750–1350, 550–900 | 3 cm | RGB indices: RGI, VVI, VDVI, VARI, TGI, SI, SHP, SCI, SAT, NGRDI, NDTI, NDI, HI, GRVI, GLI, GLAI, ExG, ERGBVE, CI, BI, RI, HUE, Multispectral: NDVI | Mapping WTD |
[47] | Bog | Disturbed | Sphagnum spp. | Aeryon Skyranger | Aeryon HDZoom30 | RGB | 2 cm | NA | |
[120] | Fen | Natural | Dupontia psilosantha, Eriophorum scheuchzeri | Phantom 4 Pro | LI-COR LI-7810 | NA | NA | NA | Methane emission mapping |
[126] | Peatland | Disturbed | Mosses, sedges, birch, spruce, pine | Fixed-Wing | Canon Powershot SX260, Canon Powershot S100, FLIR Tau 2 TC324 TIR | RGB | 5 cm | BNDVI, NIRGB, TIR | Monitoring the functioning of a treatment peatland purifying mine process effluent water |
[48] | Bog | NA | Carex spp., Eriophorum angustifolium, Molinia caerulea, Sphagnum spp., Trichophorum cespitosum, Drosera rotundifolia, Juncus squarrosus, Potamogeton polygonifolius, Hypericum helodes, Parnassia palustris | Microdrone MD4-1000 | Olympus E-P1 | RGB | 2.53 cm | Band ratios: Blue/(Red+Blue+Green), Red/(Red+Blue brightness+Green), Green/(Red+Blue+Green), Mean difference to neighbors: Green Layer, DSM | Peatland classification |
[23] | Bog | Disturbed | Sphagnum spp., Chamaedaphne calyculata, Rhododendron groenlandicum, Kalmia angustifolia, Vaccinium myrtilloides, Picea mariana, Betula populifolia, Larix laricina | Matrice 600 Pro | Canon DSLR (RGB), LiAIR S220 (LiDAR) | ±2 cm | Point Cloud | Peatland mapping | |
[116] | Bog | Disturbed | Sphagnum cuspidatum, Odontoschisma fluitans, Drosera rotundifolia, Rhynchospora alba, Eriophorum vaginatum, Chamaedaphne calyculata, Andromeda polifolia, Rhododendron tomentosum Harmaja, Vaccinium oxycoccos | Mavic 2 Pro | L1D-20c | RGB | 2.4 cm | NA | |
[46] | Peatland | Disturbed | bushes, trees | Mavic Pro | RGB Built-in | RGB | 1–3 cm | DSM | |
[127] | Peatland | Disturbed | tussocky microrelief | NA | NA | NA | NA | NA | Peatland monitoring |
[128] | Peatland | Natural | NA | Matrice 210 v2 | Zenmuse XT2 | Thermal | NA | NA | |
[119] | Peatland | Restored | NA | Quadrocopter ALICE | AMSYS 5812-0150-B, TSYS01, Humicap HMP110 | NA | NA | NA | |
[123] | Bog | Restored | Sphagnum spp., Polytrichum strictum, Calluna vulgaris, Eriophorum vaginatum | eBee SQ | Parrot Sequoia | 440–850 | 4 cm | NDVI | Restoration Monitoring |
[121] | Bog | Disturbed | Calluna vulgaris, Eriophorum vaginatum, Eriophorum angustifolium, Sphagnum spp. | SenseFly swingletCam | Canon IXUS 220 HS | RGB | Orhtophoto: 2.46 cm, DSM: 20 cm | DSM, Elevation Slope (ELEV SLP), Profile curvature (VCU), Plan curvature (HCU) | |
[117] | Fen | Restored | Carex spp., Epilobium hirsutum, Juncus effusus, Glyceria maxima, Agrostis stolonifera, Typha latifolia | eBee Plus | RGB senseFly S.O.D.A., Sequoia multispectral, FLIR TAU 2 thermal | Multispectral: 550–790 | RGB: 1.7–1.5, Multispectral: 7.6–7.9, Thermal: 15.1 cm | GI, NDVI, reNDVI, gNDVI | |
[118] | Fen | Restored | Papillosum, Sphagnum spp. | Phantom 4 Pro/Phantom 4 RTK | RGB Built-in | RGB | 1.2–3.33 cm | DTM |
4.4. In Situ-Based Remote Sensing
Reference | Peatland Type * | Peatland Status | Dominant Vegetation | Instrument | Spectral Range | Indices | Applications |
---|---|---|---|---|---|---|---|
[49] | Bog | Near natural, restored | Sphagnum spp. | SVC HR-1024 spectroradiometer | 350–2500 | NDWI, NDVI, EVI, PRI, fWBI, Cim | Estimate water content and GPP |
[139] | Fen | Natural | Sphagnum spp. | SKR1860 | 531-1240 | NDVI, PRI, WBI, Cigreen | Assess the impact of manipulated environmental conditions on Sphagnum |
[132] | Peatland | Disturbed | Sphagnum spp. | Decagon Inc, ASD | 630 and 800 | NDVI | Response of boreal peatland community composition and NDVI |
[136] | Bog | Restored | White beak rush | AMSPEC-III | 522–809 | PRI | Seasonal changes in Light Use Efficiency (LUE) |
[129] | Fen | NA | Sphagnum spp. | ASD Fieldspec | 350–2500 | WI, FWBI | Subsurface moisture and WTD monitoring |
[130] | Bog | NA | NA | ASD Fieldspec | 350–2500 | NA | Classifying peatland vegetation |
[140] | Bog | NA | Sphagnum spp. | “Spectra Vista Corporation (SVC) DC-R/T Integrating Sphere fitted to an HR-1024i spectroradiometer” | 400–2400 | NA | Investigation of nitrogen deposition |
[27] | Bog | NA | NA | Riegl VZ-1000 | NA | NA | Characterising peatland microtopography |
[134] | Bog | Disturbed | NA | FARO Focus3D X330 | NA | NA | Assessment of surface change in blanket bogs |
[138] | Fen | Natural | NA | CM3 pyranometers, Quantum sensors | NA | NDVI | Net Ecosystem Productivity of peatland |
[135] | Bog | Disturbed | Sphagnum spp. | Canon EOS 5D | RGB | NA | Tracking the plant phenology |
[137] | Fen | Natural | Carex acutiformis | Spectral Reflectance Sensors | NA | NA | Above- and belowground phenology |
[50] | Fen | Natural | Sphagnum spp. | Piccolo Doppio | 400–1000 | NDVI, EVI, NIRv | Observing peatland vegetation dynamic |
[131] | Peatland | Natural | Sphagnum spp. | ASD Fieldspec | 350–2500 | WI, FWBI, CI, NDVI | Explores the relationship between spectral indices and greenhouse gas emissions in northern peatland ecosystems |
[133] | Fen | Natural | Sphagnum spp., wet brown mosses | ASD Fieldspec | 325–1075 | NA | Detect vegetation characteristics |
4.5. Multiple Platforms
4.5.1. Vegetation Dynamics and Phenology
4.5.2. Biomass Estimation
4.5.3. Restoration Monitoring
4.5.4. Challenges and Future Directions
Reference | Peatland Type * | Peatland Status | Dominant Vegetation | Active/Passive | Spaceborne | Airborne | UAV | In Situ | Applications |
---|---|---|---|---|---|---|---|---|---|
[146] | Bog | Disturbed | Graminoid, Ericeae spp., Sphagnum spp. | Active | ● | ● | Carbon stocks estimation | ||
[147] | Peatland | Disturbed | Sphagnum spp., Carex spp., shrub | Passive | ● | ● | Characterising peatland plant composition | ||
[148] | Fen | Natural | Eriophorum vaginatum, Calluna vulgaris and Erica tetralix, Sphagnum spp., Rhyncospora alba. | Passive | ● | ● | Ecosystem respiration modelling and upscaling | ||
[16] | Bog | Disturbed | Epilobietea angustifolia, Caricetum limosae, Molinio-Arrhenatheretea, Nardo-Callunetea | Mixed | ● | ● | Evaluation of peat extraction | ||
[141] | Bog | Natural | Sphagnum spp., Typha latifolia | Passive | ● | ● | ● | Evaluation of phenospectral dynamics | |
[149] | Bog | Natural | Sphagnum spp., Carex spp., Typha latifolia | Passive | ● | ● | Measuring land surface albedo | ||
[150] | Bog | Disturbed | Picea abies, Pinus sylvestris, Betula pubescens | Mixed | ● | ● | Methane flux measurements | ||
[151] | Bog | Natural | Sphagnum spp. | Mixed | ● | ● | ● | Peatland mapping | |
[51] | Fen | Natural | Sphagnum spp., evergreen shrubs | Mixed | ● | ● | ● | ||
[152] | Peatland | Natural | Betula pubescens, forb and shrub species | Mixed | ● | ● | |||
[145] | Peatland | Natural | Sphagnum spp. | Mixed | ● | ● | |||
[18] | Bog | Natural | Sphagnum spp., Typha angustifolia | Passive | ● | ● | Peatland monitoring | ||
[143] | Bog | Natural | Sphagnum spp. | Passive | ● | ● | |||
[22] | Bog | Natural | Sphagnum spp., Pleurozium schreberi, Eriophorum sp., Trichophorum germanicum | Active | ● | ● | |||
[153] | Fen | Disturbed | Sphagnum fuscum, Empetrum nigrum, Andromeda polyfolia, Betula nana, Rubus chamaemorus, Carex spp. | Mixed | ● | ● | |||
[38] | Fen | Natural | Carex panicea, Anthoxanthum odoratum, Carex vesicaria, Poa trivialis, Alopecurus pratensis | Passive | ● | ● | Peatland management monitoring | ||
[15] | Bog | Restored | Sphagnum spp. | Mixed | ● | ● | Restoration monitoring | ||
[154] | Peatland | Disturbed | Sphagnum spp., Picea mariana | Mixed | ● | ● | Soil, moisture monitoring | ||
[77] | Peatland | Disturbed | Sphagnum spp., Picea mariana | Active | ● | ● | |||
[155] | Bog | Disturbed | Sphagnum spp. | Mixed | ● | ● | WTD monitoring | ||
[156] | Bog | Restored | Calluna vulgaris, Eriophorum angustifolium, Cladonia portentosa, Sphagnum capillifolium, Pleurozium schreberi, Trichiophorum germanicum | Passive | ● | ● | Upscaling peatland productivity | ||
[144] | Fen | Natural | Sphagnum spp. | Mixed | ● | ● | ● | Vegetation mapping | |
[30] | Fen | Natural | Dwarf shrub, brown moss | Mixed | ● | ● | ● | ||
[28] | Fen | Natural | Dwarf shrub, brown moss | Mixed | ● | ● | ● | ||
[142] | Peatland | Natural | Carex spp., Menyanthes trifoliata, Andromeda polifolia, Betula nana, Vaccinium oxycoccos, Sphagnum spp., B. pubescens, Pinus sylvestris | Passive | ● | ● | Vegetation phenology monitoring |
5. Comparison of Remote Sensing Platforms applications in Northern Peatlands
6. Conclusions
- Remote sensing, especially satellite, allows coverage of inaccessible terrain, providing a means to explore and monitor peatland areas that are difficult to access on foot or by traditional field measurements;
- It enables measurements and observations without direct contact with the studied object. This ensures that the physical properties of the peatland are not altered during data collection;
- Remote sensing facilitates upscaling from point scale measurements to larger scales, such as slopes, basins, valleys, or even entire mountain ranges. This capability allows a broader understanding of peatland dynamics and patterns across different spatial extents;
- Radar data, commonly used in remote sensing, provides weather independence. Data acquisition can continue regardless of weather conditions, allowing for consistent monitoring and analysis;
- Remote sensing enables the collection of complete and continuous data records over time from specific locations. This longitudinal data can reveal temporal patterns, changes, and trends in peatland characteristics and dynamics;
- Different sensors can be utilised in remote sensing, each capable of measuring specific physical properties of peatlands. This multi-sensor approach comprehensively explains various aspects, such as vegetation dynamics, hydrological conditions, and subsurface characteristics;
- Remote sensing data archives offer the opportunity to access historical data, allowing researchers to analyse peatland changes over time. By utilising these archives, valuable insights can be gained into long-term trends and transformations.
- The limitations associated with remote sensing in peatland research are as follows:
- Mapping peatland ecological conditions at the appropriate scale is challenging, as peatlands can appear visually homogeneous at moderate spatial resolutions, e.g., in satellite imageries such as MODIS, but display high complexity at finer resolutions, e.g., in drone and airborne imageries;
- The reflectance spectra of peatland vegetation, particularly Sphagnum mosses, can change when the mosses are desiccated, making it challenging to identify species and moisture content accurately using spectral satellite data;
- A comparably small number of studies have proven the concept of using hyperspectral satellite and UAV hyperspectral remote sensing data for peatland research. This indicates a need for further research to establish the effectiveness of remote sensing in this context;
- Acquiring very high spatial resolution remote sensing data can be expensive. The costs of obtaining such data may limit its accessibility and utilisation in peatland research and management applications;
- Remote sensing data with very high spatial resolution typically covers a small swath, resulting in limited coverage of peatland areas. This constraint can hinder the comprehensive assessment and monitoring of more significant peatland regions;
- The temporal resolution of most sensor systems is currently insufficient for practical peatland analysis. The frequency at which data is collected may not adequately capture the temporal dynamics and changes occurring within peatlands;
- In an operational context, where large volumes of data are involved, automated algorithms for peatland analysis become necessary. However, the existing algorithms are primarily designed for optical data, and there is a scarcity of studies focusing on radar data for peatland analysis;
- There is limited availability of field validation data, particularly in inaccessible areas. This limitation hampers the validation and verification of remote sensing-based peatland analysis methods, impeding the reliability of the results;
- Another limitation is the lack of quantitative error assessment methods for manual and automated peatland analysis using remote sensing. Establishing robust measures to assess the accuracy and uncertainty of remote sensing data-derived peatland information is crucial for ensuring the reliability and validity of the findings.
Perspectives for Future Research
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Gorham, E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef]
- Minasny, B.; Berglund, Ö.; Connolly, J.; Hedley, C.; de Vries, F.; Gimona, A.; Kempen, B.; Kidd, D.; Lilja, H.; Malone, B.; et al. Digital Mapping of Peatlands—A Critical Review. Earth-Sci. Rev. 2019, 196, 102870. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Mahdianpari, M.; Jafarzadeh, H.; Granger, J.E.; Mohammadimanesh, F.; Brisco, B.; Salehi, B.; Homayouni, S.; Weng, Q. A Large-Scale Change Monitoring of Wetlands Using Time Series Landsat Imagery on Google Earth Engine: A Case Study in Newfoundland. GISci. Remote Sens. 2020, 57, 1102–1124. [Google Scholar] [CrossRef]
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global Peatland Dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010, 37, L13402. [Google Scholar] [CrossRef]
- Kimmel, K.; Mander, Ü. Ecosystem Services of Peatlands: Implications for Restoration. Prog. Phys. Geogr. 2010, 34, 491–514. [Google Scholar] [CrossRef]
- Antala, M.; Juszczak, R.; van der Tol, C.; Rastogi, A. Impact of Climate Change-Induced Alterations in Peatland Vegetation Phenology and Composition on Carbon Balance. Sci. Total Environ. 2022, 827, 154294. [Google Scholar] [CrossRef]
- Pereira, D.; Mendes, C.; Dias, E. The Potential of Peatlands in Global Climate Change Mitigation: A Case Study of Terceira and Flores Islands (Azores, Portugal) Hydrologic Services. SN Appl. Sci. 2022, 4, 184. [Google Scholar] [CrossRef]
- Belyea, L.R.; Malmer, N. Carbon Sequestration in Peatland: Patterns and Mechanisms of Response to Climate Change. Glob. Change Biol. 2004, 10, 1043–1052. [Google Scholar] [CrossRef]
- Alshammari, L.; Large, D.J.; Boyd, D.S.; Sowter, A.; Anderson, R.; Andersen, R.; Marsh, S. Long-Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland. Remote Sens. 2018, 10, 1103. [Google Scholar] [CrossRef]
- Šimanauskienė, R.; Linkevičienė, R.; Bartold, M.; Dąbrowska-Zielińska, K.; Slavinskienė, G.; Veteikis, D.; Taminskas, J. Peatland Degradation: The Relationship between Raised Bog Hydrology and Normalized Difference Vegetation Index. Ecohydrology 2019, 12, e2159. [Google Scholar] [CrossRef]
- Pablo Arroyo-Mora, J.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.S.; Ifimov, G.; Elmer, K.; et al. Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring. Drones 2019, 3, 12. [Google Scholar] [CrossRef]
- Torabi Haghighi, A.; Menberu, M.W.; Darabi, H.; Akanegbu, J.; Kløve, B. Use of Remote Sensing to Analyse Peatland Changes after Drainage for Peat Extraction. Land Degrad. Dev. 2018, 29, 3479–3488. [Google Scholar] [CrossRef]
- White, L.; McGovern, M.; Hayne, S.; Touzi, R.; Pasher, J.; Duffe, J. Investigating the Potential Use of RADARSAT-2 and UAS Imagery for Monitoring the Restoration of Peatlands. Remote Sens. 2020, 12, 2383. [Google Scholar] [CrossRef]
- Jucha, W.; Mareczka, P.; Okupny, D. Using Remote Sensing Materials to Assess the Effects of Peat Extraction on the Morphology and Vegetation Cover of a Raised Bog (Ludźmierz near Nowy Targ, Southern Poland). Mires Peat 2020, 26, 1–19. [Google Scholar] [CrossRef]
- Jucha, W.; Mareczka, P.; Okupny, D. Assessment of Peat Extraction Range and Vegetation Succession on the Baligówka Degraded Peat Bog (Central Europe) Using the ALS Data and Orthophotomap. Remote Sens. 2022, 14, 2817. [Google Scholar] [CrossRef]
- Kalacska, M.; Arroyo-Mora, J.P.; Soffer, R.J.; Roulet, N.T.; Moore, T.R.; Humphreys, E.; Leblanc, G.; Lucanus, O.; Inamdar, D. Estimating Peatland Water Table Depth and Net Ecosystem Exchange: A Comparison between Satellite and Airborne Imagery. Remote Sens. 2018, 10, 687. [Google Scholar] [CrossRef]
- Crichton, K.A.; Anderson, K.; Charman, D.J.; Gallego-Sala, A. Seasonal Climate Drivers of Peak NDVI in a Series of Arctic Peatlands. Sci. Total Environ. 2022, 838, 156419. [Google Scholar] [CrossRef]
- Worrall, F.; Howden, N.J.K.; Burt, T.P.; Rico-Ramirez, M.A.; Kohler, T. Local Climate Impacts from Ongoing Restoration of a Peatland. Hydrol. Process. 2022, 36, e14496. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Rastogi, A.; Juszczak, R. Review of Top-of-Canopy Sun-Induced Fluorescence (Sif) Studies from Ground, Uav, Airborne to Spaceborne Observations. Sensors 2020, 20, 1144. [Google Scholar] [CrossRef]
- Marshall, C.; Sterk, H.P.; Gilbert, P.J.; Andersen, R.; Bradley, A.V.; Sowter, A.; Marsh, S.; Large, D.J. Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring. Remote Sens. 2022, 14, 336. [Google Scholar] [CrossRef]
- Kalacska, M.; Arroyo-Mora, J.P.; Lucanus, O. Comparing Uas Lidar and Structure-from-Motion Photogrammetry for Peatland Mapping and Virtual Reality (Vr) Visualization. Drones 2021, 5, 36. [Google Scholar] [CrossRef]
- Langlois, M.N.; Richardson, M.C.; Price, J.S. Delineation of Peatland Lagg Boundaries from Airborne LiDAR. J. Geophys. Res. Biogeosci. 2017, 122, 2191–2205. [Google Scholar] [CrossRef]
- Korpela, I.; Haapanen, R.; Korrensalo, A.; Tuittila, E.S.; Vesala, T. Fine-Resolution Mapping of Microforms of a Boreal Bog Using Aerial Images and Waveform-Recording LiDAR. Mires Peat 2020, 26, 3. [Google Scholar] [CrossRef]
- Jones, E.; Chasmer, L.; Devito, K.; Rood, S.; Hopkinson, C. Ecological Impacts of Shortening Fire Return Intervals on Boreal Peatlands and Transition Zones Using Integrated in Situ Field Sampling and Lidar Approaches. Ecohydrology 2022, 15, e2403. [Google Scholar] [CrossRef]
- Graham, J.D.; Glenn, N.F.; Spaete, L.P.; Hanson, P.J. Characterizing Peatland Microtopography Using Gradient and Microform-Based Approaches. Ecosystems 2020, 23, 1464–1480. [Google Scholar] [CrossRef]
- Räsänen, A.; Virtanen, T. Data and Resolution Requirements in Mapping Vegetation in Spatially Heterogeneous Landscapes. Remote Sens. Environ. 2019, 230, 111207. [Google Scholar] [CrossRef]
- Gatis, N.; Luscombe, D.J.; Carless, D.; Parry, L.E.; Fyfe, R.M.; Harrod, T.R.; Brazier, R.E.; Anderson, K. Mapping Upland Peat Depth Using Airborne Radiometric and Lidar Survey Data. Geoderma 2019, 335, 78–87. [Google Scholar] [CrossRef]
- Räsänen, A.; Juutinen, S.; Tuittila, E.S.; Aurela, M.; Virtanen, T. Comparing Ultra-High Spatial Resolution Remote-Sensing Methods in Mapping Peatland Vegetation. J. Veg. Sci. 2019, 30, 1016–1026. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Gill, L.; Regan, S.; Naughton, O.; Johnston, P.; Waldren, S.; Ghosh, B. Mapping Vegetation Communities Inside Wetlands Using Sentinel-2 Imagery in Ireland. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102083. [Google Scholar] [CrossRef]
- Lovitt, J.; Rahman, M.M.; Saraswati, S.; McDermid, G.J.; Strack, M.; Xu, B. UAV Remote Sensing Can Reveal the Effects of Low-Impact Seismic Lines on Surface Morphology, Hydrology, and Methane (CH4) Release in a Boreal Treed Bog. J. Geophys. Res. Biogeosciences 2018, 123, 1117–1129. [Google Scholar] [CrossRef]
- Lees, K.J.; Artz, R.R.E.; Chandler, D.; Aspinall, T.; Boulton, C.A.; Buxton, J.; Cowie, N.R.; Lenton, T.M. Using Remote Sensing to Assess Peatland Resilience by Estimating Soil Surface Moisture and Drought Recovery. Sci. Total Environ. 2021, 761, 143312. [Google Scholar] [CrossRef] [PubMed]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for Using Remote Sensing to Estimate Carbon Fluxes across Northern Peatlands—A Review. Sci. Total Environ. 2018, 615, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Toth, C.; Jóźków, G. Remote Sensing Platforms and Sensors: A Survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Gatis, N.; Anderson, K.; Grand-Clement, E.; Luscombe, D.J.; Hartley, I.P.; Smith, D.; Brazier, R.E. Evaluating MODIS Vegetation Products Using Digital Images for Quantifying Local Peatland CO2 Gas Fluxes. Remote Sens. Ecol. Conserv. 2017, 3, 217–231. [Google Scholar] [CrossRef]
- Metzger, C.M.H.; Heinichen, J.; Eickenscheidt, T.; Drösler, M. Impact of Land-Use Intensity on the Relationships between Vegetation Indices, Photosynthesis and Biomass of Intensively and Extensively Managed Grassland Fens. Grass Forage Sci. 2017, 72, 50–63. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Brisco, B. Separability Analysis of Wetlands in Canada Using Multi-Source SAR Data. GISci. Remote Sens. 2019, 56, 1233–1260. [Google Scholar] [CrossRef]
- Sirin, A.; Medvedeva, M.; Maslov, A.; Vozbrannaya, A. Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data. Land 2018, 7, 71. [Google Scholar] [CrossRef]
- O’Leary, D.; Brown, C.; Daly, E. Digital Soil Mapping of Peatland Using Airborne Radiometric Data and Supervised Machine Learning—Implication for the Assessment of Carbon Stock. Geoderma 2022, 428, 116086. [Google Scholar] [CrossRef]
- Szporak-Wasilewska, S.; Piórkowski, H.; Ciężkowski, W.; Jarzombkowski, F.; Sławik, Ł.; Kopeć, D. Mapping Alkaline Fens, Transition Mires and Quaking Bogs Using Airborne Hyperspectral and Laser Scanning Data. Remote Sens. 2021, 13, 1504. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Soffer, R.J.; Moore, T.R.; Roulet, N.T.; Juutinen, S.; Ifimov, G.; Leblanc, G.; Inamdar, D. Airborne Hyperspectral Evaluation of Maximum Gross Photosynthesis, Gravimetricwater Content, and CO2 Uptake Efficiency of the Mer Bleue Ombrotrophic Peatland. Remote Sens. 2018, 10, 565. [Google Scholar] [CrossRef]
- Carless, D.; Luscombe, D.J.; Gatis, N.; Anderson, K.; Brazier, R.E. Mapping Landscape-Scale Peatland Degradation Using Airborne Lidar and Multispectral Data. Landsc. Ecol. 2019, 34, 1329–1345. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.A.; Liu, B.; Wang, X. Subpixel Mapping and Confusion Matrix Analysis of Plant Functional Types in Peatlands Using MESMA Applied to AISA Eagle Imagery. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Czapiewski, S. Assessment of the Applicability of UAV for the Creation of Digital Surface Model of a Small Peatland. Front. Earth Sci. 2022, 10, 834923. [Google Scholar] [CrossRef]
- Rahman, M.M.; McDermid, G.J.; Strack, M.; Lovitt, J. A New Method to Map Groundwater Table in Peatlands Using Unmanned Aerial Vehicles. Remote Sens. 2017, 9, 1057. [Google Scholar] [CrossRef]
- Díaz-Varela, R.A.; Calvo Iglesias, S.; Cillero Castro, C.; Díaz Varela, E.R. Sub-Metric Analisis of Vegetation Structure in Bog-Heathland Mosaics Using Very High Resolution Rpas Imagery. Ecol. Indic. 2018, 89, 861–873. [Google Scholar] [CrossRef]
- Lees, K.J.; Lees, K.J.; Artz, R.R.E.; Khomik, M.; Clark, J.M.; Ritson, J.; Hancock, M.H.; Cowie, N.R.; Quaife, T. Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4547–4557. [Google Scholar] [CrossRef]
- Rastogi, A.; Antala, M.; Prikaziuk, E.; Yang, P.; van der Tol, C.; Juszczak, R. Exploring the Potential of SCOPE Model for Detection of Leaf Area Index and Sun-Induced Fluorescence of Peatland Canopy. Remote Sens. 2022, 14, 4010. [Google Scholar] [CrossRef]
- Räsänen, A.; Aurela, M.; Juutinen, S.; Kumpula, T.; Lohila, A.; Penttilä, T.; Virtanen, T. Detecting Northern Peatland Vegetation Patterns at Ultra-High Spatial Resolution. Remote Sens. Ecol. Conserv. 2020, 6, 457–471. [Google Scholar] [CrossRef]
- Czapiewski, S.; Szumińska, D. An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021. Land 2022, 11, 24. [Google Scholar] [CrossRef]
- Dronova, I.; Kislik, C.; Dinh, Z.; Kelly, M. A Review of Unoccupied Aerial Vehicle Use in Wetland Applications: Emerging Opportunities in Approach, Technology, and Data. Drones 2021, 5, 45. [Google Scholar] [CrossRef]
- Mirmazloumi, S.M.; Moghimi, A.; Ranjgar, B.; Mohseni, F.; Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Brisco, B. Status and Trends of Wetland Studies in Canada Using Remote Sensing Technology with a Focus on Wetland Classification: A Bibliographic Analysis. Remote Sens. 2021, 13, 4025. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Byrne, J. The Benefits of Publishing Systematic Quantitative Literature Reviews for PhD Candidates and Other Early-Career Researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef]
- Clarivate Journal Citation Reports: Reference Guide. J. Cit. Rep. 2023, 10–23.
- Sirin, A.A.; Medvedeva, M.A.; Makarov, D.A.; Maslov, A.A.; Joosten, H. Multispectral Satellite Based Monitoring of Land Cover Change and Associated Fire Reduction after Large-Scale Peatland Rewetting Following the 2010 Peat Fires in Moscow Region (Russia). Ecol. Eng. 2020, 158, 106044. [Google Scholar] [CrossRef]
- Artz, R.R.E.; Johnson, S.; Bruneau, P.; Britton, A.J.; Mitchell, R.J.; Ross, L.; Donaldson-Selby, G.; Donnelly, D.; Aitkenhead, M.J.; Gimona, A.; et al. The Potential for Modelling Peatland Habitat Condition in Scotland Using Long-Term MODIS Data. Sci. Total Environ. 2019, 660, 429–442. [Google Scholar] [CrossRef]
- Alshammari, L.; Boyd, D.S.; Sowter, A.; Marshall, C.; Andersen, R.; Gilbert, P.; Marsh, S.; Large, D.J. Use of Surface Motion Characteristics Determined by InSAR to Assess Peatland Condition. J. Geophys. Res. Biogeosci. 2020, 125, e2018JG004953. [Google Scholar] [CrossRef]
- Bradley, A.V.; Andersen, R.; Marshall, C.; Sowter, A.; Large, D.J. Identification of Typical Ecohydrological Behaviours Using InSAR Allows Landscape-Scale Mapping of Peatland Condition. Earth Surf. Dyn. 2022, 10, 261–277. [Google Scholar] [CrossRef]
- Gatis, N.; Grand-Clement, E.; Luscombe, D.J.; Hartley, I.P.; Anderson, K.; Brazier, R.E. Growing Season CO2 Fluxes from a Drained Peatland Dominated by Molinia Caerulea. Mires Peat 2019, 24, 1–16. [Google Scholar] [CrossRef]
- Junttila, S.; Kelly, J.; Kljun, N.; Aurela, M.; Klemedtsson, L.; Lohila, A.; Nilsson, M.B.; Rinne, J.; Tuittila, E.S.; Vestin, P.; et al. Upscaling Northern Peatland Co2 Fluxes Using Satellite Remote Sensing Data. Remote Sens. 2021, 13, 818. [Google Scholar] [CrossRef]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Sottocornola, M.; Kiely, G.; Hambley, G.; Hill, T.; Saunders, M.; Cowie, N.R.; et al. A Model of Gross Primary Productivity Based on Satellite Data Suggests Formerly Afforested Peatlands Undergoing Restoration Regain Full Photosynthesis Capacity after Five to Ten Years. J. Environ. Manag. 2019, 246, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Judah, A.; Hu, B. The Integration of Multi-Source Remotely-Sensed Data in Support of the Classification of Wetlands. Remote Sens. 2019, 11, 1537. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M.; Mohammadimanesh, F.; Brisco, B.; Salehi, B. A Synergic Use of Sentinel-1 and Sentinel-2 Imagery for Complex Wetland Classification Using Generative Adversarial Network (Gan) Scheme. Water 2021, 13, 3601. [Google Scholar] [CrossRef]
- Dyukarev, E.A.; Alekseeva, M.N.; Golovatskaya, E.A. Study of Wetland Ecosystem Vegetation Using Satellite Data. Izv.-Atmos. Ocean. Phys. 2017, 53, 1029–1041. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M.; Brisco, B.; Granger, J.; Mohammadimanesh, F.; Salehi, B. Comparing Solo versus Ensemble Convolutional Neural Networks for Wetland Classification Using Multi-Spectral Satellite Imagery. Remote Sens. 2021, 13, 2046. [Google Scholar] [CrossRef]
- Millard, K.; Kirby, P.; Nandlall, S.; Behnamian, A.; Banks, S.; Pacini, F. Using Growing-Season Time Series Coherence for Improved Peatland Mapping: Comparing the Contributions of Sentinel-1 and RADARSAT-2 Coherence in Full and Partial Time Series. Remote Sens. 2020, 12, 2465. [Google Scholar] [CrossRef]
- Pang, Y.; Huang, Y.; He, L.; Zhou, Y.; Sui, J.; Xu, J. Remote Sensing Phenology of Two Chinese Northern Sphagnum Bogs under Climate Drivers during 2001 and 2018. Ecol. Indic. 2021, 129, 107968. [Google Scholar] [CrossRef]
- Räsänen, A.; Juutinen, S.; Aurela, M.; Virtanen, T. Predicting Aboveground Biomass in Arctic Landscapes Using Very High Spatial Resolution Satellite Imagery and Field Sampling. Int. J. Remote Sens. 2019, 40, 1175–1199. [Google Scholar] [CrossRef]
- Helbig, M.; Humphreys, E.R.; Todd, A. Contrasting Temperature Sensitivity of CO2 Exchange in Peatlands of the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 2019, 124, 2126–2143. [Google Scholar] [CrossRef]
- Parmentier, F.J.W.; Rasse, D.P.; Lund, M.; Bjerke, J.W.; Drake, B.G.; Weldon, S.; Tømmervik, H.; Hansen, G.H. Vulnerability and Resilience of the Carbon Exchange of a Subarctic Peatland to an Extreme Winter Event. Environ. Res. Lett. 2018, 13, 065009. [Google Scholar] [CrossRef]
- Medvedeva, M.A.; Vozbrannaya, A.E.; Sirin, A.A.; Maslov, A.A. Capabilities of Multispectral Satellite Data in an Assessment of the Status of Abandoned Fire Hazardous and Rewetting Peat Extraction Lands. Izv.-Atmos. Ocean. Phys. 2017, 53, 1072–1080. [Google Scholar] [CrossRef]
- Räsänen, A.; Tolvanen, A.; Kareksela, S. Monitoring Peatland Water Table Depth with Optical and Radar Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102866. [Google Scholar] [CrossRef]
- Bechtold, M.; Schlaffer, S.; Tiemeyer, B.; De Lannoy, G. Inferring Water Table Depth Dynamics from ENVISAT-ASAR C-Band Backscatter over a Range of Peatlands from Deeply-Drained to Natural Conditions. Remote Sens. 2018, 10, 536. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. Quantifying the Relative Contributions of Vegetation and Soil Moisture Conditions to Polarimetric C-Band SAR Response in a Temperate Peatland. Remote Sens. Environ. 2018, 206, 123–138. [Google Scholar] [CrossRef]
- Asmuß, T.; Bechtold, M.; Tiemeyer, B. On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils. Remote Sens. 2019, 11, 1659. [Google Scholar] [CrossRef]
- Millard, K.; Darling, S.; Pelletier, N.; Schultz, S. Seasonally-Decomposed Sentinel-1 Backscatter Time-Series Are Useful Indicators of Peatland Wildfire Vulnerability. Remote Sens. Environ. 2022, 283, 113329. [Google Scholar] [CrossRef]
- Burdun, I.; Bechtold, M.; Sagris, V.; Komisarenko, V.; De Lannoy, G.; Mander, Ü. A Comparison of Three Trapezoid Models Using Optical and Thermal Satellite Imagery for Water Table Depth Monitoring in Estonian Bogs. Remote Sens. 2020, 12, 1980. [Google Scholar] [CrossRef]
- Burdun, I.; Bechtold, M.; Sagris, V.; Lohila, A.; Humphreys, E.; Desai, A.R.; Nilsson, M.B.; De Lannoy, G.; Mander, Ü. Satellite Determination of Peatland Water Table Temporal Dynamics by Localizing Representative Pixels of A SWIR-Based Moisture Index. Remote Sens. 2020, 12, 2936. [Google Scholar] [CrossRef]
- Krzepek, K.; Schmidt, J.; Iwaszczuk, D. Fusion of SAR and Multi-Spectral Time Series for Determination of Water Table Depth and Lake Area in Peatlands. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 561–575. [Google Scholar] [CrossRef]
- Franklin, S.E.; Skeries, E.M.; Stefanuk, M.A.; Ahmed, O.S. Wetland Classification Using Radarsat-2 SAR Quad-Polarization and Landsat-8 OLI Spectral Response Data: A Case Study in the Hudson Bay Lowlands Ecoregion. Int. J. Remote Sens. 2018, 39, 1615–1627. [Google Scholar] [CrossRef]
- Gatis, N.; Benaud, P.; Ashe, J.; Luscombe, D.J.; Grand-Clement, E.; Hartley, I.P.; Anderson, K.; Brazier, R.E. Assessing the Impact of Peat Erosion on Growing Season CO2 Fluxes by Comparing Erosional Peat Pans and Surrounding Vegetated Haggs. Wetl. Ecol. Manag. 2019, 27, 187–205. [Google Scholar] [CrossRef]
- Dearborn, K.D.; Baltzer, J.L. Unexpected Greening in a Boreal Permafrost Peatland Undergoing Forest Loss Is Partially Attributable to Tree Species Turnover. Glob. Change Biol. 2021, 27, 2867–2882. [Google Scholar] [CrossRef] [PubMed]
- Tampuu, T.; Praks, J.; Uiboupin, R.; Kull, A. Long Term Interferometric Temporal Coherence and DInSAR Phase in Northern Peatlands. Remote Sens. 2020, 12, 1566. [Google Scholar] [CrossRef]
- Connolly, J.; Holden, N.M. Detecting Peatland Drains with Object Based Image Analysis and Geoeye-1 Imagery. Carbon Balance Manag. 2017, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Bourgeau-Chavez, L.L.; Endres, S.; Powell, R.; Battaglia, M.J.; Benscoter, B.; Turetsky, M.; Kasischke, E.S.; Banda, E. Mapping Boreal Peatland Ecosystem Types from Multitemporal Radar and Optical Satellite Imagery. Can. J. For. Res. 2017, 47, 545–559. [Google Scholar] [CrossRef]
- Khan, A.; Said, A.; Ullah, I. Landsat Based Distribution Mapping of High-Altitude Peatlands in Hindu Kush Himalayas—A Case Study of Broghil Valley, Pakistan. J. Mt. Sci. 2020, 17, 42–49. [Google Scholar] [CrossRef]
- Amani, M.; Poncos, V.; Brisco, B.; Foroughnia, F.; Delancey, E.R.; Ranjbar, S. Insar Coherence Analysis for Wetlands in Alberta, Canada Using Time-Series Sentinel-1 Data. Remote Sens. 2021, 13, 3315. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M.; Brisco, B.; Granger, J.; Mohammadimanesh, F.; Salehi, B. Wetland Mapping Using Multi-Spectral Satellite Imagery and Deep Convolutional Neural Networks: A Case Study in Newfoundland and Labrador, Canada. Can. J. Remote Sens. 2021, 47, 243–260. [Google Scholar] [CrossRef]
- Burdun, I.; Sagris, V.; Mander, Ü. Relationships between Field-Measured Hydrometeorological Variables and Satellite-Based Land Surface Temperature in a Hemiboreal Raised Bog. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 295–301. [Google Scholar] [CrossRef]
- Tampuu, T.; Praks, J.; Kull, A.; Uiboupin, R.; Tamm, T.; Voormansik, K. Detecting Peat Extraction Related Activity with Multi-Temporal Sentinel-1 InSAR Coherence Time Series. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102309. [Google Scholar] [CrossRef]
- Dąbrowska-Zielińska, K.; Misiura, K.; Malińska, A.; Gurdak, R.; Grzybowski, P.; Bartold, M.; Kluczek, M. Spatiotemporal Estimation of Gross Primary Production for Terrestrial Wetlands Using Satellite and Field Data. Remote Sens. Appl. Soc. Environ. 2022, 27. [Google Scholar] [CrossRef]
- Harenda, K.M.; Markowicz, K.M.; Poczta, P.; Stachlewska, I.S.; Bojanowski, J.S.; Czernecki, B.; McArthur, A.; Schütemeyer, D.; Chojnicki, B.H. Estimation of the Effects of Aerosol Optical Properties on Peatland Production in Rzecin, Poland. Agric. For. Meteorol. 2022, 316, 108861. [Google Scholar] [CrossRef]
- Worrall, F.; Boothroyd, I.M.; Gardner, R.L.; Howden, N.J.K.; Burt, T.P.; Smith, R.; Mitchell, L.; Kohler, T.; Gregg, R. The Impact of Peatland Restoration on Local Climate: Restoration of a Cool Humid Island. J. Geophys. Res. Biogeosci. 2019, 124, 1696–1713. [Google Scholar] [CrossRef]
- D’Acunha, B.; Lee, S.C.; Johnson, M.S. Ecohydrological Responses to Rewetting of a Highly Impacted Raised Bog Ecosystem. Ecohydrology 2018, 11, e1922. [Google Scholar] [CrossRef]
- Exler, J.L.; Moore, R.D. Quantifying Throughfall, Stemflow and Interception Loss in Five Vegetation Communities in a Maritime Raised Bog. Agric. For. Meteorol. 2022, 327, 109202. [Google Scholar] [CrossRef]
- Mirosław-Świątek, D.; Kiczko, A.; Szporak-Wasilewska, S.; Grygoruk, M. Too Wet and Too Dry? Uncertainty of DEM as a Potential Source of Significant Errors in a Model-Based Water Level Assessment in Riparian and Mire Ecosystems. Wetl. Ecol. Manag. 2017, 25, 547–562. [Google Scholar] [CrossRef]
- Chasmer, L.; Hopkinson, C. Threshold Loss of Discontinuous Permafrost and Landscape Evolution. Glob. Change Biol. 2017, 23, 2672–2686. [Google Scholar] [CrossRef]
- Boaga, J.; Viezzoli, A.; Cassiani, G.; Deidda, G.P.; Tosi, L.; Silvestri, S. Resolving the Thickness of Peat Deposits with Contact-Less Electromagnetic Methods: A Case Study in the Venice Coastland. Sci. Total Environ. 2020, 737, 139361. [Google Scholar] [CrossRef] [PubMed]
- Ågren, A.M.; Hasselquist, E.M.; Stendahl, J.; Nilsson, M.B.; Paul, S.S. Delineating the Distribution of Mineral and Peat Soils at the Landscape Scale in Northern Boreal Regions. Soil 2022, 8, 733–749. [Google Scholar] [CrossRef]
- Soffer, R.J.; Ifimov, G.; Arroyo-Mora, J.P.; Kalacska, M. Validation of Airborne Hyperspectral Imagery from Laboratory Panel Characterization to Image Quality Assessment: Implications for an Arctic Peatland Surrogate Simulation Site. Can. J. Remote Sens. 2019, 45, 476–508. [Google Scholar] [CrossRef]
- Siemon, B.; Ibs-von Seht, M.; Frank, S. Airborne Electromagnetic and Radiometric Peat Thickness Mapping of a Bog in Northwest Germany (Ahlen-Falkenberger Moor). Remote Sens. 2020, 12, 203. [Google Scholar] [CrossRef]
- Barker, P.A.; Allen, G.; Pitt, J.R.; Bauguitte, S.J.B.; Pasternak, D.; Cliff, S.; France, J.L.; Fisher, R.E.; Lee, J.D.; Bower, K.N.; et al. Airborne Quantification of Net Methane and Carbon Dioxide Fluxes from European Arctic Wetlands in Summer 2019. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380. [Google Scholar] [CrossRef] [PubMed]
- Rocchio, F.J.; Gage, E.; Ramm-Granberg, T.; Borkenhagen, A.K.; Cooper, D.J. Ecohydrological Characteristics of a Newly Identified Coastal Raised Bog on the Western Olympic Peninsula, Washington State, USA. Ecohydrology 2021, 14, e2287. [Google Scholar] [CrossRef]
- Elmes, M.C.; Davidson, S.J.; Price, J.S. Ecohydrological Interactions in a Boreal Fen–Swamp Complex, Alberta, Canada. Ecohydrology 2021, 14, e2335. [Google Scholar] [CrossRef]
- Chasmer, L.E.; Hopkinson, C.D.; Petrone, R.M.; Sitar, M. Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence With a New Active Normalized Burn Ratio for Wildfires. Geophys. Res. Lett. 2017, 44, 11851–11859. [Google Scholar] [CrossRef]
- Hancock, M.H.; England, B.; Cowie, N.R. Knockfin Heights: A High-Altitude Flow Country Peatland Showing Extensive Erosion of Uncertain Origin. Mires Peat 2018, 23, 1–20. [Google Scholar] [CrossRef]
- Krause, L.; McCullough, K.J.; Kane, E.S.; Kolka, R.K.; Chimner, R.A.; Lilleskov, E.A. Impacts of Historical Ditching on Peat Volume and Carbon in Northern Minnesota USA Peatlands. J. Environ. Manag. 2021, 296, 113090. [Google Scholar] [CrossRef]
- Enayetullah, H.; Chasmer, L.; Hopkinson, C.; Thompson, D.; Cobbaert, D. Identifying Conifer Tree vs. Deciduous Shrub and Tree Regeneration Trajectories in a Space-for-Time Boreal Peatland Fire Chronosequence Using Multispectral Lidar. Atmosphere 2022, 13, 112. [Google Scholar] [CrossRef]
- Inamdar, D.; Kalacska, M.; Leblanc, G.; Arroyo-Mora, J.P. Characterizing and Mitigating Sensor Generated Spatial Correlations in Airborne Hyperspectral Imaging Data. Remote Sens. 2020, 12, 641. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Rastogi, A.; Rascher, U.; Rademske, P.; Schickling, A.; Cogliati, S.; Julitta, T.; Mac Arthur, A.; Hueni, A.; Tomelleri, E.; et al. Hyplant-Derived Sun-Induced Fluorescence-A New Opportunity to Disentangle Complex Vegetation Signals from Diverse Vegetation Types. Remote Sens. 2019, 11, 1691. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Rastogi, A.; Cogliati, S.; Rascher, U.; Gąbka, M.; Juszczak, R. Can Vegetation Indices Serve as Proxies for Potential Sun-Induced Fluorescence (SIF)? A Fuzzy Simulation Approach on Airborne Imaging Spectroscopy Data. Remote Sens. 2021, 13, 2545. [Google Scholar] [CrossRef]
- Kattenborn, T.; Fassnacht, F.E.; Pierce, S.; Lopatin, J.; Grime, J.P.; Schmidtlein, S. Linking Plant Strategies and Plant Traits Derived by Radiative Transfer Modelling. J. Veg. Sci. 2017, 28, 717–727. [Google Scholar] [CrossRef]
- Ivanov, D.G.; Kotlov, I.P.; Minayeva, T.Y.; Kurbatova, J.A. Estimation of Carbon Dioxide Fluxes on a Ridge-Hollow Bog Complex Using a High Resolution Orthophotoplan. Nat. Conserv. Res. 2021, 6, 16–28. [Google Scholar] [CrossRef]
- Beyer, F.; Jurasinski, G.; Couwenberg, J.; Grenzdörffer, G. Multisensor Data to Derive Peatland Vegetation Communities Using a Fixed-Wing Unmanned Aerial Vehicle. Int. J. Remote Sens. 2019, 40, 9103–9125. [Google Scholar] [CrossRef]
- Ikkala, L.; Ronkanen, A.K.; Ilmonen, J.; Similä, M.; Rehell, S.; Kumpula, T.; Päkkilä, L.; Klöve, B.; Marttila, H. Unmanned Aircraft System (UAS) Structure-From-Motion (SfM) for Monitoring the Changed Flow Paths and Wetness in Minerotrophic Peatland Restoration. Remote Sens. 2022, 14, 3169. [Google Scholar] [CrossRef]
- Lampert, A.; Pätzold, F.; Asmussen, M.O.; Lobitz, L.; Krüger, T.; Rausch, T.; Sachs, T.; Wille, C.; Sotomayor Zakharov, D.; Gaus, D.; et al. Studying Boundary Layer Methane Isotopy and Vertical Mixing Processes at a Rewetted Peatland Site Using an Unmanned Aircraft System. Atmos. Meas. Tech. 2020, 13, 1937–1952. [Google Scholar] [CrossRef]
- Scheller, J.H.; Mastepanov, M.; Christensen, T.R. Toward UAV-Based Methane Emission Mapping of Arctic Terrestrial Ecosystems. Sci. Total Environ. 2022, 819, 153161. [Google Scholar] [CrossRef]
- Harris, A.; Baird, A.J. Microtopographic Drivers of Vegetation Patterning in Blanket Peatlands Recovering from Erosion. Ecosystems 2019, 22, 1035–1054. [Google Scholar] [CrossRef]
- Lendzioch, T.; Langhammer, J.; Vlček, L.; Minařík, R. Mapping the Groundwater Level and Soil Moisture of a Montane Peat Bog Using Uav Monitoring and Machine Learning. Remote Sens. 2021, 13, 907. [Google Scholar] [CrossRef]
- Purre, A.H.; Pajula, R.; Ilomets, M. Carbon Dioxide Sink Function in Restored Milled Peatlands—The Significance of Weather and Vegetation. Geoderma 2019, 346, 30–42. [Google Scholar] [CrossRef]
- Scholefield, P.; Morton, D.; McShane, G.; Carrasco, L.; Whitfield, M.G.; Rowland, C.; Rose, R.; Wood, C.; Tebbs, E.; Dodd, B.; et al. Estimating Habitat Extent and Carbon Loss from an Eroded Northern Blanket Bog Using UAV Derived Imagery and Topography. Prog. Phys. Geogr. 2019, 43, 282–298. [Google Scholar] [CrossRef]
- Palace, M.; Herrick, C.; DelGreco, J.; Finnell, D.; Garnello, A.J.; McCalley, C.; McArthur, K.; Sullivan, F.; Varner, R.K. Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS). Remote Sens. 2018, 10, 1498. [Google Scholar] [CrossRef]
- Isokangas, E.; Davids, C.; Kujala, K.; Rauhala, A.; Ronkanen, A.K.; Rossi, P.M. Combining Unmanned Aerial Vehicle-Based Remote Sensing and Stable Water Isotope Analysis to Monitor Treatment Peatlands of Mining Areas. Ecol. Eng. 2019, 133, 137–147. [Google Scholar] [CrossRef]
- Koroleva, E.S.; Khairullin, R.R.; Babkina, E.A.; Slagoda, E.A.; Khomutov, A.V.; Melnikov, V.P.; Babkin, E.M.; Tikhonravova, Y.V. Seasonal Thawing Local Changes Indicators for UAV-Based Cryolithozone Mapping. Dokl. Earth Sci. 2020, 491, 179–182. [Google Scholar] [CrossRef]
- Alekseychik, P.; Katul, G.; Korpela, I.; Launiainen, S. Eddies in Motion: Visualizing Boundary-Layer Turbulence above an Open Boreal Peatland Using UAS Thermal Videos. Atmos. Meas. Tech. 2021, 14, 3501–3521. [Google Scholar] [CrossRef]
- Banskota, A.; Falkowski, M.J.; Smith, A.M.S.; Kane, E.S.; Meingast, K.M.; Bourgeau-Chavez, L.L.; Miller, M.E.; French, N.H. Continuous Wavelet Analysis for Spectroscopic Determination of Subsurface Moisture and Water-Table Height in Northern Peatland Ecosystems. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1526–1536. [Google Scholar] [CrossRef]
- Erudel, T.; Fabre, S.; Houet, T.; Mazier, F.; Briottet, X. Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements. Remote Sens. 2017, 9, 748. [Google Scholar] [CrossRef]
- Tucker, C.; O’Neill, A.; Meingast, K.; Bourgeau-Chavez, L.; Lilleskov, E.; Kane, E.S. Spectral Indices of Vegetation Condition and Soil Water Content Reflect Controls on CH4 and CO2 Exchange in Sphagnum-Dominated Northern Peatlands. J. Geophys. Res. Biogeosci. 2022, 127. [Google Scholar] [CrossRef]
- McPartland, M.Y.; Kane, E.S.; Falkowski, M.J.; Kolka, R.; Turetsky, M.R.; Palik, B.; Montgomery, R.A. The Response of Boreal Peatland Community Composition and NDVI to Hydrologic Change, Warming, and Elevated Carbon Dioxide. Glob. Change Biol. 2019, 25, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Räsänen, A.; Lindholm, V.; Aurela, M.; Virtanen, T. Detecting Peatland Vegetation Patterns with Multi-Temporal Field Spectroscopy. GISci. Remote Sens. 2022, 59, 2111–2126. [Google Scholar] [CrossRef]
- Chico, G.; Clutterbuck, B.; Midgley, N.G.; Labadz, J. Application of Terrestrial Laser Scanning to Quantify Surface Changes in Restored and Degraded Blanket Bogs. Mires Peat 2019, 24, 1–24. [Google Scholar] [CrossRef]
- Lang, M.; Nilson, T.; Kuusk, A.; Pisek, J.; Korhonen, L.; Uri, V. Digital Photography for Tracking the Phenology of an Evergreen Conifer Stand. Agric. For. Meteorol. 2017, 246, 15–21. [Google Scholar] [CrossRef]
- Tortini, R.; Coops, N.C.; Nesic, Z.; Christen, A.; Lee, S.C.; Hilker, T. Remote Sensing of Seasonal Light Use Efficiency in Temperate Bog Ecosystems. Sci. Rep. 2017, 7, 8563. [Google Scholar] [CrossRef] [PubMed]
- Schwieger, S.; Blume-Werry, G.; Peters, B.; Smiljanić, M.; Kreyling, J. Patterns and Drivers in Spring and Autumn Phenology Differ Above- and Belowground in Four Ecosystems under the Same Macroclimatic Conditions. Plant Soil 2019, 445, 217–229. [Google Scholar] [CrossRef]
- Harenda, K.M.; Samson, M.; Juszczak, R.; Markowicz, K.M.; Stachlewska, I.S.; Kleniewska, M.; Macarthur, A.; Schüttemeyer, D.; Chojnicki, B.H. Impact of Atmospheric Optical Properties on Net Ecosystem Productivity of Peatland in Poland. Remote Sens. 2021, 13, 2124. [Google Scholar] [CrossRef]
- Rastogi, A.; Stróżecki, M.; Kalaji, H.M.; Łuców, D.; Lamentowicz, M.; Juszczak, R. Impact of Warming and Reduced Precipitation on Photosynthetic and Remote Sensing Properties of Peatland Vegetation. Environ. Exp. Bot. 2019, 160, 71–80. [Google Scholar] [CrossRef]
- Girard, A.; Schweiger, A.K.; Carteron, A.; Kalacska, M.; Laliberté, E. Foliar Spectra and Traits of Bog Plants across Nitrogen Deposition Gradients. Remote Sens. 2020, 12, 2448. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Soffer, R.; Ifimov, G.; Leblanc, G.; Schaaf, E.S.; Lucanus, O. Evaluation of Phenospectral Dynamics with Sentinel-2A Using a Bottom-up Approach in a Northern Ombrotrophic Peatland. Remote Sens. Environ. 2018, 216, 544–560. [Google Scholar] [CrossRef]
- Linkosalmi, M.; Tuovinen, J.P.; Nevalainen, O.; Peltoniemi, M.; Taniş, C.M.; Arslan, A.N.; Rainne, J.; Lohila, A.; Laurila, T.; Aurela, M. Tracking Vegetation Phenology of Pristine Northern Boreal Peatlands by Combining Digital Photography with CO2 flux and Remote Sensing Data. Biogeosciences 2022, 19, 4747–4765. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Gill, L.; Regan, S.; Waldren, S.; Ghosh, B. A Nested Drone-Satellite Approach to Monitoring the Ecological Conditions of Wetlands. ISPRS J. Photogramm. Remote Sens. 2021, 174, 151–165. [Google Scholar] [CrossRef]
- Räsänen, A.; Juutinen, S.; Kalacska, M.; Aurela, M.; Heikkinen, P.; Mäenpää, K.; Rimali, A.; Virtanen, T. Peatland Leaf-Area Index and Biomass Estimation with Ultra-High Resolution Remote Sensing. GISci. Remote Sens. 2020, 57, 943–964. [Google Scholar] [CrossRef]
- DeLancey, E.R.; Kariyeva, J.; Bried, J.T.; Hird, J.N. Large-Scale Probabilistic Identification of Boreal Peatlands Using Google Earth Engine, Open-Access Satellite Data, and Machine Learning. PLoS ONE 2019, 14, e0218165. [Google Scholar] [CrossRef] [PubMed]
- Carless, D.; Kulessa, B.; Booth, A.D.; Drocourt, Y.; Sinnadurai, P.; Street-Perrott, F.A.; Jansson, P. An Integrated Geophysical and GIS Based Approach Improves Estimation of Peatland Carbon Stocks. Geoderma 2021, 402, 115176. [Google Scholar] [CrossRef]
- McPartland, M.Y.; Falkowski, M.J.; Reinhardt, J.R.; Kane, E.S.; Kolka, R.; Turetsky, M.R.; Douglas, T.A.; Anderson, J.; Edwards, J.D.; Palik, B.; et al. Characterizing Boreal Peatland Plant Composition and Species Diversity with Hyperspectral Remote Sensing. Remote Sens. 2019, 11, 1685. [Google Scholar] [CrossRef]
- Kelly, J.; Kljun, N.; Eklundh, L.; Klemedtsson, L.; Liljebladh, B.; Olsson, P.O.; Weslien, P.; Xie, X. Modelling and Upscaling Ecosystem Respiration Using Thermal Cameras and UAVs: Application to a Peatland during and after a Hot Drought. Agric. For. Meteorol. 2021, 300, 108330. [Google Scholar] [CrossRef]
- Canisius, F.; Wang, S.; Croft, H.; Leblanc, S.G.; Russell, H.A.J.; Chen, J.; Wang, R. A UAV-Based Sensor System for Measuring Land Surface Albedo: Tested over a Boreal Peatland Ecosystem. Drones 2019, 3, 27. [Google Scholar] [CrossRef]
- Räsänen, A.; Manninen, T.; Korkiakoski, M.; Lohila, A.; Virtanen, T. Predicting Catchment-Scale Methane Fluxes with Multi-Source Remote Sensing. Landsc. Ecol. 2021, 36, 1177–1195. [Google Scholar] [CrossRef]
- Lovitt, J.; Rahman, M.M.; McDermid, G.J. Assessing the Value of UAV Photogrammetry for Characterizing Terrain in Complex Peatlands. Remote Sens. 2017, 9, 715. [Google Scholar] [CrossRef]
- Karlson, M.; Gålfalk, M.; Crill, P.; Bousquet, P.; Saunois, M.; Bastviken, D. Delineating Northern Peatlands Using Sentinel-1 Time Series and Terrain Indices from Local and Regional Digital Elevation Models. Remote Sens. Environ. 2019, 231, 111252. [Google Scholar] [CrossRef]
- de la Barreda-Bautista, B.; Boyd, D.S.; Ledger, M.; Siewert, M.B.; Chandler, C.; Bradley, A.V.; Gee, D.; Large, D.J.; Olofsson, J.; Sowter, A.; et al. Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. Remote Sens. 2022, 14, 444. [Google Scholar] [CrossRef]
- Millard, K.; Thompson, D.K.; Parisien, M.A.; Richardson, M. Soil Moisture Monitoring in a Temperate Peatland Using Multi-Sensor Remote Sensing and Linear Mixed Effects. Remote Sens. 2018, 10, 903. [Google Scholar] [CrossRef]
- Kohv, M.; Sepp, E.; Vammus, L. Assessing Multitemporal Water-Level Changes with Uav-Based Photogrammetry. Photogramm. Rec. 2017, 32, 424–442. [Google Scholar] [CrossRef]
- Lees, K.J.; Khomik, M.; Quaife, T.; Clark, J.M.; Hill, T.; Klein, D.; Ritson, J.; Artz, R.R.E. Assessing the Reliability of Peatland GPP Measurements by Remote Sensing: From Plot to Landscape Scale. Sci. Total Environ. 2021, 766, 142613. [Google Scholar] [CrossRef] [PubMed]
References | Scope | Protocol | Databases Searched | Number of Articles | Timespan | Key Findings |
---|---|---|---|---|---|---|
[52] | This research delivers a comprehensive assessment of the use of remote sensing (RS) techniques in peatland research and the external factors that can influence the way they evolve. | State-of-the-art review (1) | Web of Science and Scopus | 59 | 2010–2021 | There has been a conspicuous rise in adopting RS methodologies within peatland research in the past decade. This surge can largely be attributed to enhanced accessibility to a diverse range of RS datasets, including Sentinel 1 and 2, Landsat 8, and SPOT 6 and 7, alongside the rapid progress of open-source software tools such as ESA SNAP, QGIS, and SAGA GIS. |
[53] | The aim of this study was to examine the present and prospective capabilities of unmanned aerial vehicles (UAVs) in wetlands to enhance ecosystem management practices. It investigates the status of UAV applications in wetlands and identifies several research, technological, and data prerequisites for optimising their effectiveness. | Scoping review (2) | Web of Science, ProQuest, and Google Scholar | 122 | Before 6 March 2021 | This review examines the potential of UAVs to reduce the logistical demands of field surveys and to optimise UAV-based workflows for monitoring wetland environments and management strategies. Additionally, it identifies significant trends in applications, technology, and data, and provides recommendations for future research. |
[54] | This research article employs meta-data analysis to assess the contemporary status and evolution of wetland studies in Canada through RS technology. | Bibliographic analysis (3) | Web of Science and Elsevier Scopus | 300 | 1976–2020 | Many wetland classification studies were conducted within the province of Ontario, with a preference for pixel-based supervised classifiers as the primary classification algorithm. |
[3] | This article delivers an overview of the present digital mapping techniques for measuring and monitoring carbon stocks in peatlands and potential opportunities and challenges for accurately assessing the world’s peatlands. | Critical review (4) | Not mentioned | 90 | Not mentioned | This study shows a growing interest in using satellite imagery and other digital mapping technologies to map peatlands. Previous studies used RS, ecology, and environmental field studies to determine peat extent but rarely assessed the accuracy or calculated the prediction’s uncertainty. Enhancing the accuracy of peatland mapping can be achieved by incorporating multiple covariates, including optical and radar products, alongside implementing nonlinear machine learning algorithms. |
[34] | This review paper assesses the current understanding of estimating carbon dioxide fluxes in peatland utilising remote sensing technology and identifies areas for future research. | Narrative Review (5) | Not mentioned | Not mentioned | Not mentioned | The study demonstrated the potential of RS in modelling carbon fluxes across northern peatlands. Nonetheless, further research is imperative to develop more comprehensive carbon cycle models, with particular emphasis on peatlands undergoing restoration, to ensure the sustainability and durability of these models. |
[4] | This paper provides an in-depth examination of wetland remote sensing, which involves an overview of selected approaches, findings, and remote sensor types. It also offers recommendations for future wetland research. | Narrative Review (5) | Science Citation Index Extended (SCIE) | 250 | till 11 May 2016 | Aerial photography was used as the primary data source in early wetland mapping research. This data was typically of medium resolution, though some studies did use higher-resolution imagery. Hyperspectral imaging has grown in popularity in recent years. Furthermore, radar data are frequently used to detect wetland areas, and LiDAR data can be used to generate three-dimensional topographical maps. |
Component | Attributes |
---|---|
Search keyword sets | Set 1 (peatland): (TS a = (peatland OR mire OR fen OR bog) Set 2 (remote sensing): TS a = (“remote sensing” OR UAV OR NDVI OR “Normalised Difference Vegetation Index” OR “Unmanned Aerial Vehicle” OR SIF OR “Solar-Induced Chlorophyll Fluorescence” OR airborne OR LiDAR OR satellite OR “Sun-Induced Chlorophyll Fluorescence” OR “reflectance” OR EVI OR “Enhanced Vegetation Index” OR PRI OR “Photochemical Reflectance Index” OR indices OR indexes OR spectra* OR multispectral OR hyperspectral OR “VI” OR “vegetation indices”))) |
Search strategy | Utilise keywords from both Set 1 and Set 2. Conduct searches using titles, abstracts, and keywords. Focus on publications in the English language. Select “Article” document types exclusively, excluding review papers, conference proceedings, grey literature, or book chapters. Limit the timeframe of consideration to the period from 1 January 2017 to 30 December 2022. |
Platform | Proportion of Studies | Applications |
---|---|---|
Satellite | 36.5% | Carbon and methane flux estimation (14%), fire dynamics monitoring (6%), hydrology (14%), mapping and monitoring peatland extent (42%), peatland degradation (4%), restoration and management monitoring (10%), vegetation assessment (10%) |
Airborne | 20.4% | Carbon and methane flux estimation (14%), fire dynamics monitoring (14%), hydrology (14%), mapping and monitoring peatland extent (36%), Other (7%), peatland degradation (0%), restoration and management monitoring (4%), vegetation assessment (11%) |
UAV | 13.9% | Carbon and methane flux estimation (11%), fire dynamics monitoring (0%), hydrology (11%), mapping and monitoring peatland extent (37%), peatland degradation (0%), restoration and management monitoring (37%), vegetation assessment (5%) |
In situ | 10.9% | Carbon and methane flux estimation (20%), fire dynamics monitoring (0%), hydrology (7%), mapping and monitoring peatland extent (13%), peatland degradation (0%), restoration and management monitoring (0%), vegetation assessment (60%) |
Mixed | 18.2% | Carbon and methane flux estimation (12%), fire dynamics monitoring (0%), hydrology (12%), mapping and monitoring peatland extent (40%), other (4%), peatland degradation (4%), restoration and management monitoring (8%), vegetation assessment (20%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmajeed, A.Y.A.; Juszczak, R. Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sens. 2024, 16, 591. https://doi.org/10.3390/rs16030591
Abdelmajeed AYA, Juszczak R. Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sensing. 2024; 16(3):591. https://doi.org/10.3390/rs16030591
Chicago/Turabian StyleAbdelmajeed, Abdallah Yussuf Ali, and Radosław Juszczak. 2024. "Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects" Remote Sensing 16, no. 3: 591. https://doi.org/10.3390/rs16030591
APA StyleAbdelmajeed, A. Y. A., & Juszczak, R. (2024). Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sensing, 16(3), 591. https://doi.org/10.3390/rs16030591