The Impact of Firework Ban Relaxation on Variations in SO2 Emissions in China During the 2023 Chinese New Year
Abstract
:1. Introduction
2. Materials and Methods
2.1. WRF-Chem Model
2.2. 4DVar
2.3. The Prior Emissions and Observation Data
2.4. Experimental Design
3. Results
3.1. Observation Analysis
3.2. Spatial Variations in Emissions
3.3. Temporal Variations in Emissions
3.4. Forecast Performance
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, G.; Gong, W.; Quan, J.; Li, J.; Zhang, M. Spatial and temporal distributions of contaminants emitted because of Chinese New Year’s Eve celebrations in Wuhan. Environ. Sci. Process. Impacts 2014, 16, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, L.; Chen, J.; Mellouki, A.; Jiang, P.; Gao, Y.; Li, Y.; Yang, Y.; Wang, W. Influence of fireworks displays on the chemical characteristics of PM2.5 in rural and suburban areas in Central and East China. Sci. Total. Environ. 2017, 578, 476–484. [Google Scholar] [CrossRef] [PubMed]
- McLain, J.H. Pyrotechnics from the Viewpoint of Solid State Chemistry; Franklin Institute Press: Philadelphia, PA, USA, 1980; pp. 155–157. [Google Scholar]
- Dutcher, D.D.; Perry, K.D.; Cahill, T.A.; Copeland, S.A. Effects of indoor pyrotechnic displays on the air quality in the Houston Astrodome. J. Air Waste Manag. Assoc. 1999, 49, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhuang, G.; Xu, C.; An, Z. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos. Environ. 2007, 41, 417–431. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Lin, Y.; Wang, Q.; Fu, J.S.; Zhang, R.; Li, J.; Deng, C.; Fu, Q. Impact of anthropogenic emission on air quality over a megacity–revealed from an intensive atmospheric campaign during the Chinese Spring Festival. Atmos. Chem. Phys. 2012, 12, 11631–11645. [Google Scholar] [CrossRef]
- Seidel, D.J.; Birnbaum, A.N. Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States. Atmos. Environ. 2015, 115, 192–198. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, T.; Xiao, W.; Zhao, S.; Tie, X. Weather-Climate Anomalies and Regional Transport Contribute to Air Pollution in Northern China During the COVID-19 Lockdown. J. Geophys. Res. Atmos. 2022, 127, e2021JD036345. [Google Scholar] [CrossRef]
- Ravindra, K.; Mor, S.; Kaushik, C. Short-term variation in air quality associated with firework events: A case study. J. Environ. Monit. 2003, 5, 260–264. [Google Scholar] [CrossRef]
- Drewnick, F.; Hings, S.S.; Curtius, J.; Eerdekens, G.; Williams, J. Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmos. Environ. 2006, 40, 4316–4327. [Google Scholar] [CrossRef]
- Jing, H.; Li, Y.F.; Zhao, J.; Li, B.; Sun, J.; Chen, R.; Gao, Y.; Chen, C. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environ. Pollut. 2014, 192, 204–211. [Google Scholar] [CrossRef]
- Wang, S.; Yu, R.; Shen, H.; Wang, S.; Hu, Q.; Cui, J.; Yan, Y.; Huang, H.; Hu, G. Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China. Environ. Pollut. 2019, 251, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, H.; Li, T.; Zhang, L. The effects of fireworks discharge on atmospheric PM2.5 concentration in the Chinese lunar new year. Int. J. Environ. Res. Public Health 2020, 17, 9333. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Dinh, V.D. Changes in forced expiratory flow due to air pollution from fireworks: Preliminary report. Environ. Res. 1975, 9, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.M.; Iskandrian, S.; Conkling, J. Fatal and near-fatal asthma in children exposed to fireworks. Ann. Allergy Asthma Immunol. 2000, 85, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Y.; Yao, Q. The health costs of the industrial leap forward in China: Evidence from the sulfur dioxide emissions of coal-fired power stations. China Econ. Rev. 2018, 49, 68–83. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, L.; Liu, W.; Song, H. Fireworks regulation, air pollution, and public health: Evidence from China. Reg. Sci. Urban Econ. 2022, 92, 103722. [Google Scholar] [CrossRef]
- Lai, Y.; Brimblecombe, P. Changes in Air Pollutants from Fireworks in Chinese Cities. Atmosphere 2022, 13, 1388. [Google Scholar] [CrossRef]
- Pang, N.; Gao, J.; Zhao, P.; Wang, Y.; Xu, Z.; Chai, F. The impact of fireworks control on air quality in four Northern Chinese cities during the Spring Festival. Atmos. Environ. 2021, 244, 117958. [Google Scholar] [CrossRef]
- Jing, S.; Yang, L.; Hongli, C.; Zhen, M.; Wei, L.; Jiayi, H. Analysis on the causes of air pollution during the Spring Festival in Xi’an and the effectiveness of the government’s ban on fireworks. IOP Conf. Ser. Earth Environ. Sci. 2021, 766, 012085. [Google Scholar] [CrossRef]
- Liu, D.; Li, W.; Peng, J.; Ma, Q. The effect of banning fireworks on air quality in a heavily polluted city in Northern China during Chinese Spring Festival. Front. Environ. Sci. 2022, 10, 296. [Google Scholar] [CrossRef]
- Rathore, D.S.; Singh, B.; Nagda, C.; Kumar, K.; Kain, T.; Jhala, L.S. COVID-19 Implicated ban on Diwali fireworks: A case study on the air quality of Rajasthan, India. EQA-Int. J. Environ. Qual. 2022, 47, 22–30. [Google Scholar]
- Zhao, N.; Wang, G.; Zhu, Z.; Liu, Z.; Tian, G.; Liu, Y.; Gao, W.; Lang, J. Impact of fireworks burning on air quality during the Spring Festival in 2021–2022 in Linyi, a central city in the North China Plain. Environ. Sci. Pollut. Res. 2023, 30, 17915–17925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.; Reddy, S.; Fu, J.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, L. Optimal reduction of anthropogenic emissions for air pollution control and the retrieval of emission source from observed pollutants I. Application of incomplete adjoint operator. Sci. China Earth Sci. 2018, 61, 951–956. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Hakkarainen, J.; Ju, W.; Liu, Y.; Jiang, F.; He, W. Distinguishing Anthropogenic CO2 Emissions From Different Energy Intensive Industrial Sources Using OCO-2 Observations: A Case Study in Northern China. J. Geophys. Res. Atmos. 2018, 123, 9462–9473. [Google Scholar] [CrossRef]
- Li, N.; Tang, K.; Wang, Y.; Wang, J.; Feng, W.; Zhang, H.; Liao, H.; Hu, J.; Long, X.; Shi, C.; et al. Is the efficacy of satellite-based inversion of SO2 emission model dependent? Environ. Res. Lett. 2021, 16, 035018. [Google Scholar] [CrossRef]
- Feng, S.; Jiang, F.; Wu, Z.; Wang, H.; Ju, W.; Wang, H. CO emissions inferred from surface CO observations over China in December 2013 and 2017. J. Geophys. Res. Atmos. 2020, 125, e2019JD031808. [Google Scholar] [CrossRef]
- Dai, T.; Cheng, Y.; Goto, D.; Li, Y.; Tang, X.; Shi, G.; Nakajima, T. Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem. Atmos. Chem. Phys. 2021, 21, 4357–4379. [Google Scholar] [CrossRef]
- Kamińska, J.A. Probabilistic forecasting of nitrogen dioxide concentrations at an urban road intersection. Sustainability 2018, 10, 4213. [Google Scholar] [CrossRef]
- Catalano, M.; Galatioto, F.; Bell, M.; Namdeo, A.; Bergantino, A.S. Improving the prediction of air pollution peak episodes generated by urban transport networks. Environ. Sci. Policy 2016, 60, 69–83. [Google Scholar] [CrossRef]
- Mo, J.; Gong, S.; He, J.; Zhang, L.; Ke, H.; An, X. Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations. Atmosphere 2022, 13, 470. [Google Scholar] [CrossRef]
- Hu, Y.; Zang, Z.; Ma, X.; Li, Y.; Liang, Y.; You, W.; Pan, X.; Li, Z. Four-dimensional variational assimilation for SO2 emission and its application around the COVID-19 lockdown in the spring 2020 over China. Atmos. Chem. Phys. 2022, 22, 13183–13200. [Google Scholar] [CrossRef]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Sun, Y.; Fu, P.; Gao, M.; Wu, H.; Lu, M.; Wu, Q.; et al. Unbalanced emission reductions of different species and sectors in China during COVID-19 lockdown derived by multi-species surface observation assimilation. Atmos. Chem. Phys. 2023, 23, 6217–6240. [Google Scholar] [CrossRef]
- Corradini, S.; Merucci, L.; Prata, A.; Piscini, A. Volcanic ash and SO2 in the 2008 Kasatochi eruption: Retrievals comparison from different IR satellite sensors. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Knorr, W.; Dentener, F.; Hantson, S.; Jiang, L.; Klimont, Z.; Arneth, A. Air quality impacts of European wildfire emissions in a changing climate. Atmos. Chem. Phys. 2016, 16, 5685–5703. [Google Scholar] [CrossRef]
- Carn, S.; Clarisse, L.; Prata, A.J. Multi-decadal satellite measurements of global volcanic degassing. J. Volcanol. Geotherm. Res. 2016, 311, 99–134. [Google Scholar] [CrossRef]
- Barman, S.; Singh, R.; Negi, M.; Bhargava, S. Ambient air quality of Lucknow City (India) during use of fireworks on Diwali Festival. Environ. Monit. Assess. 2008, 137, 495–504. [Google Scholar] [CrossRef]
- Hamad, S.; Green, D.; Heo, J. Evaluation of health risk associated with fireworks activity at Central London. Air Qual. Atmos. Health 2016, 9, 735–741. [Google Scholar] [CrossRef]
- Retama, A.; Neria-Hernández, A.; Jaimes-Palomera, M.; Rivera-Hernández, O.; Sánchez-Rodríguez, M.; López-Medina, A.; Velasco, E. Fireworks: A major source of inorganic and organic aerosols during Christmas and New Year in Mexico city. Atmos. Environ. X 2019, 2, 100013. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, Y.; Wang, Z.; Yin, Y. Aerosol composition and sources during the Chinese Spring Festival: Fireworks, secondary aerosol, and holiday effects. Atmos. Chem. Phys. 2015, 15, 6023–6034. [Google Scholar] [CrossRef]
- Kong, S.; Li, L.; Li, X.; Yin, Y.; Chen, K.; Liu, D.; Yuan, L.; Zhang, Y.; Shan, Y.; Ji, Y. The impacts of firework burning at the Chinese Spring Festival on air quality: Insights of tracers, source evolution and aging processes. Atmos. Chem. Phys. 2015, 15, 2167–2184. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lai, Y. Effect of fireworks, Chinese new year and the COVID-19 lockdown on air pollution and public attitudes. Aerosol Air Qual. Res. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Ma, X.; Liang, Y.; You, W.; Pan, X.; Zang, Z. The optimization of SO2 emissions by the 4DVAR and EnKF methods and its application in WRF-Chem. Sci. Total. Environ. 2023, 888, 163796. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zang, Z.; Chen, D.; Ma, X.; Liang, Y.; You, W.; Pan, X.; Wang, L.; Wang, D.; Zhang, Z. Optimization and evaluation of SO2 emissions based on WRF-Chem and 3DVAR data assimilation. Remote Sens. 2022, 14, 220. [Google Scholar] [CrossRef]
- Hou, W.; Wang, J.; Xu, X.; Reid, J.S.; Han, D. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework. J. Quant. Spectrosc. Radiat. Transf. 2016, 178, 400–415. [Google Scholar] [CrossRef]
- Hou, W.; Wang, J.; Xu, X.; Reid, J.S.; Janz, S.J.; Leitch, J.W. An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107161. [Google Scholar] [CrossRef]
- Fioletov, V.E.; McLinden, C.; Krotkov, N.; Li, C. Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys. Res. Lett. 2015, 42, 1969–1976. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Wang, X.; Nie, W.; Wang, J.; Gao, R.; Xu, P.; Shou, Y.; Zhang, Q.; Wang, W. Impacts of firecracker burning on aerosol chemical characteristics and human health risk levels during the Chinese New Year Celebration in Jinan, China. Sci. Total. Environ. 2014, 476, 57–64. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Cao, X.; Zhang, X. Effects of residential customs on spatio-temporal pollution characteristics of fireworks burning during Chinese New Year. Asia-Pac. J. Atmos. Sci. 2022, 58, 169–180. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Ban, J.; Chen, M. The 2015 and 2016 wintertime air pollution in China: SO2 emission changes derived from a WRF-Chem/EnKF coupled data assimilation system. Atmos. Chem. Phys. 2019, 19, 8619–8650. [Google Scholar] [CrossRef]
- Cai, S.; Ma, Q.; Wang, S.; Zhao, B.; Brauer, M.; Cohen, A.; Martin, R.V.; Zhang, Q.; Li, Q.; Wang, Y.; et al. Impact of air pollution control policies on future PM2.5 concentrations and their source contributions in China. J. Environ. Manag. 2018, 227, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- An, J.; Huang, Y.; Huang, C.; Wang, X.; Yan, R.; Wang, Q.; Wang, H.; Jing, S.; Zhang, Y.; Liu, Y.; et al. Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China. Atmos. Chem. Phys. 2021, 21, 2003–2025. [Google Scholar] [CrossRef]
- Huang, X.; Ge, Y.; Yang, T.; Song, Z.; Yu, S.; Li, Q.; Wang, X.; Wang, Y.; Wang, X.; Su, J.; et al. Relaxation of Spring Festival Firework Regulations Leads to a Deterioration in Air Quality. Environ. Sci. Technol. 2024, 58, 10185–10194. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather. Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38–41. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 1994. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Pahlow, M.; Parlange, M.B.; Porté-Agel, F. On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteorol. 2001, 99, 225–248. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Zhou, D.; Qin, J.; Guo, X. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeorol. 2010, 11, 995–1006. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
Name | Background Emissions | Optimized Emissions | Study Period |
---|---|---|---|
Emi_2022 | MEIC_2016 | EMI_2022 | 30 January to 2 February 2022 |
Emi_2023 | MEIC_2016 | EMI_2023 | 20 to 23 January 2023 |
Name | Emissions | Study Period |
---|---|---|
Sim_MEIC_2016 | MEIC_2016 | 20 to 23 January 2023 |
Sim_EMI_2023 | EMI_2023 | 20 to 23 January 2023 |
Lunar 29 December | CNY’s Eve | Lunar 1 January | Lunar 2 January | |||||
---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
China | 35.052 | 35.163 | 39.753 | 43.383 | 38.34 | 38.39 | 36.916 | 38.335 |
EGT | 6.893 | 7.037 | 7.378 | 9.074 | 6.765 | 7.683 | 6.399 | 7.052 |
NEC | 2.658 | 2.454 | 3.579 | 3.399 | 3.036 | 2.65 | 3.31 | 2.693 |
NCP | 4.524 | 3.643 | 5.0 | 5.352 | 4.881 | 4.473 | 4.071 | 4.629 |
Sim_MEIC_2016 | Sim_EMI_2023 | |||||
---|---|---|---|---|---|---|
CORR | RMSE | BIAS | CORR | RMSE | BIAS | |
() | () | () | () | |||
China | 0.13 | 21.15 | 4.37 | 0.64 | 10.74 | −0.20 |
EGT | 0.07 | 29.36 | 4.44 | 0.65 | 16.88 | 1.03 |
NEC | 0.12 | 19.63 | −2.81 | 0.64 | 14.67 | −1.86 |
NCP | 0.30 | 24.55 | 11.52 | 0.80 | 10.33 | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Hu, Y.; Li, Y.; Zang, Z.; You, W.; Liu, L. The Impact of Firework Ban Relaxation on Variations in SO2 Emissions in China During the 2023 Chinese New Year. Remote Sens. 2024, 16, 4191. https://doi.org/10.3390/rs16224191
He X, Hu Y, Li Y, Zang Z, You W, Liu L. The Impact of Firework Ban Relaxation on Variations in SO2 Emissions in China During the 2023 Chinese New Year. Remote Sensing. 2024; 16(22):4191. https://doi.org/10.3390/rs16224191
Chicago/Turabian StyleHe, Xinyu, Yiwen Hu, Yi Li, Zengliang Zang, Wei You, and Lang Liu. 2024. "The Impact of Firework Ban Relaxation on Variations in SO2 Emissions in China During the 2023 Chinese New Year" Remote Sensing 16, no. 22: 4191. https://doi.org/10.3390/rs16224191
APA StyleHe, X., Hu, Y., Li, Y., Zang, Z., You, W., & Liu, L. (2024). The Impact of Firework Ban Relaxation on Variations in SO2 Emissions in China During the 2023 Chinese New Year. Remote Sensing, 16(22), 4191. https://doi.org/10.3390/rs16224191