Water Use Efficiency in Rice Under Alternative Wetting and Drying Technique Using Energy Balance Model with UAV Information and AquaCrop in Lambayeque, Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Irrigation Management
2.3. Estimation of Crop Evapotranspiration ()
2.4. Field Measurements and Yield Data
2.4.1. Image Acquisition and Thermal Analysis for Crop Monitoring
2.4.2. Measurement of Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI)
2.4.3. Meteorological Conditions
2.4.4. Yield Performance Assessment of INIA 515-Capoteña
2.5. Generation of Orthomosaics for Temperature, NDVI, LAI, and Albedo
2.6. Energy and Water Use Efficiency Balance
2.7. Water Balance with AquaCrop
3. Results
3.1. Metric Inputs
3.1.1. Leaf Area Index (LAI)
3.1.2. Reference Evapotranspiration () and In Situ Meteorological Data
3.1.3. Cold and Hot Pixel
3.1.4. Components of the Energy Balance
3.1.5. Crop Evapotranspiration () by Energy Balance
3.2. Crop Evapotranspiration () by Water Balance
3.2.1. Yield Comparison Measured vs. AquaCrop
3.2.2. Yield and Water Use Efficiency Under CF and AWD Irrigation Treatments
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, J.; Lee, C.C.; Chen, Y. Optimal Green Technology Investment and Emission Reduction in Emissions Generating Companies under the Support of Green Bond and Subsidy. Technol. Forecast Soc. Chang. 2022, 183, 121952. [Google Scholar] [CrossRef]
- Arouna, A.; Dzomeku, I.K.; Shaibu, A.G.; Nurudeen, A.R. Water Management for Sustainable Irrigation in Rice (Oryza sativa L.) Production: A Review. Agronomy 2023, 13, 1522. [Google Scholar] [CrossRef]
- Ministerio de Desarrollo Agrario y Riego. Productive and Competitive Profile of the Main Crops in the Sector. Available online: https://siea.midagri.gob.pe/portal/siea_bi/index.html (accessed on 8 October 2023).
- Ramos-Fernández, L.; Gonzales-Quiquia, M.; Huanuqueño-Murillo, J.; Tito-Quispe, D.; Heros-Aguilar, E.; Flores del Pino, L.; Torres-Rua, A. Water Stress Index and Stomatal Conductance under Different Irrigation Regimes with Thermal Sensors in Rice Fields on the Northern Coast of Peru. Remote Sens. 2024, 16, 796. [Google Scholar] [CrossRef]
- Heros Aguilar, E.C.; Lozano Isla, F.; Casas Díaz, A.V. Technologies for Rice Production: Recommendations for Peru Based on Scientific Research. South Sustain. 2023, 4, 1–5. [Google Scholar] [CrossRef]
- Surendran, U.; Raja, P.; Jayakumar, M.; Subramoniam, S.R. Use of Efficient Water Saving Techniques for Production of Rice in India under Climate Change Scenario: A Critical Review. J. Clean. Prod. 2021, 309, 127272. [Google Scholar] [CrossRef]
- Leavitt, M.; Moreno-García, B.; Reavis, C.W.; Reba, M.L.; Runkle, B.R.K. The Effect of Water Management and Ratoon Rice Cropping on Methane Emissions and Yield in Arkansas. Agric. Ecosyst. Environ. 2023, 356, 108652. [Google Scholar] [CrossRef]
- Johnson, J.M.; Becker, M.; Kaboré, J.E.P.; Dossou-Yovo, E.R.; Saito, K. Alternate Wetting and Drying: A Water-Saving Technology for Sustainable Rice Production in Burkina Faso? Nutr. Cycl. Agroecosyst. 2024, 129, 93–111. [Google Scholar] [CrossRef]
- Soliman, E.; Azam, R.; Hammad, S.A.; Mosa, A.A.; Mansour, M.M. Impacts of Alternate Wetting and Drying Technology on Water Use and Soil Nitrogen Transformations for Sustainable Rice Production: A Review. J. Soil Sci. Agric. Eng. 2024, 15, 151–163. [Google Scholar] [CrossRef]
- Echegaray-Cabrera, I.; Cruz-Villacorta, L.; Ramos-Fernández, L.; Bonilla-Cordova, M.; Heros-Aguilar, E.; Flores del Pino, L. Effect of Alternate Wetting and Drying on the Emission of Greenhouse Gases from Rice Fields on the Northern Coast of Peru. Agronomy 2024, 14, 248. [Google Scholar] [CrossRef]
- Bwire, D.; Saito, H.; Sidle, R.C.; Nishiwaki, J. Water Management and Hydrological Characteristics of Paddy-Rice Fields under Alternate Wetting and Drying Irrigation Practice as Climate Smart Practice: A Review. Agronomy 2024, 14, 1421. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Nithya, N.; Saravanane, P.; Mariadoss, A.; Subramanian, E. Revolutionizing Rice Farming: Maximizing Yield with Minimal Water to Sustain the Hungry Planet; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Mallareddy, M.; Thirumalaikumar, R.; Balasubramanian, P.; Naseeruddin, R.; Nithya, N.; Mariadoss, A.; Eazhilkrishna, N.; Choudhary, A.K.; Deiveegan, M.; Subramanian, E.; et al. Maximizing Water Use Efficiency in Rice Farming: A Comprehensive Review of Innovative Irrigation Management Technologies. Water 2023, 15, 1802. [Google Scholar] [CrossRef]
- Price, A.H.; Norton, G.J.; Salt, D.E.; Ebenhoeh, O.; Meharg, A.A.; Meharg, C.; Islam, M.R.; Sarma, R.N.; Dasgupta, T.; Ismail, A.M.; et al. Alternate Wetting and Drying Irrigation for Rice in Bangladesh: Is It Sustainable and Has Plant Breeding Something to Offer? Food Energy Secur. 2013, 2, 120–129. [Google Scholar] [CrossRef]
- Gao, R.; Zhuo, L.; Duan, Y.; Yan, C.; Yue, Z.; Zhao, Z.; Wu, P. Effects of Alternate Wetting and Drying Irrigation on Yield, Water-Saving, and Emission Reduction in Rice Fields: A Global Meta-Analysis. Agric. For. Meteorol. 2024, 353, 110075. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the Stress-Degree-Day Parameter for Environmental Variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Niu, H.; Hollenbeck, D.; Zhao, T.; Wang, D.; Chen, Y. Evapotranspiration Estimation with Small UAVs in Precision Agriculture. Sensors 2020, 20, 6427. [Google Scholar] [CrossRef]
- Porras-Jorge, R.; Ramos-Fernández, L.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E. Performance Assessment of the AquaCrop Model to Estimate Rice Yields under Alternate Wetting and Drying Irrigation in the Coast of Peru. Sci. Agropecu. 2020, 11, 309–321. [Google Scholar] [CrossRef]
- Saha, S.K.; Ahmmed, R.; Jahan, N. Actual Evapotranspiration Estimation Using Remote Sensing: Comparison of Sebal and Metric Models. In Water Management: A View from Multidisciplinary Perspectives; Springer: Cham, Switzerland, 2022; pp. 365–383. [Google Scholar] [CrossRef]
- Quille-Mamani, J.A.; Ramos-Fernández, L.; Ontiveros-Capurata, R.E. Estimation of Rice Crop Evapotranspiration in Perú Based on the METRIC Algorithm and UAV Images. Rev. Teledetección 2021, 58, 23–38. [Google Scholar] [CrossRef]
- Taherparvar, M.; Pirmoradian, N. Estimation of Rice Evapotranspiration Using Reflective Images of Landsat Satellite in Sefidrood Irrigation and Drainage Network. Rice Sci. 2018, 25, 111–116. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Nasim, W.; Fahad, S.; Ali, M.; Ehsan, M.A.; Raza, A. Investigation of Irrigation Water Requirement and Evapotranspiration for Water Resource Management in Southern Punjab, Pakistan. Sustainability 2023, 15, 1768. [Google Scholar] [CrossRef]
- Kra, J.L.; Adahi, M.B.; Konan-Waidhet, B.A.; N’Guessan, J.-Y.K.; Koné, J.D.; Assidjo, E.N. Estimation of the Actual Evapotranspiration by the SEBAL Method in the Irrigated Rice Perimeter of Zatta (Yamoussoukro—Côte d’Ivoire). J. Water Resour. Prot. 2023, 15, 539–556. [Google Scholar] [CrossRef]
- Sawadogo, A.; Kouadio, L.; Traoré, F.; Zwart, S.J.; Hessels, T.; Gündoğdu, K.S. Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators. ISPRS Int. J. Geoinf. 2020, 9, 484. [Google Scholar] [CrossRef]
- Ramos-Fernández, L.; Quispe-Tito, D.; Altamirano-Gutiérrez, L.; Cruz-Grimaldo, C.; Quille-Mamani, J.A.; Carbonell-Rivera, J.P.; Torralba, J.; Ruiz, L.Á. Estimation of Evapotranspiration from UAV High-Resolution Images for Irrigation Systems in Rice Fields on the Northern Coast of Peru. Sci. Agropecu. 2024, 15, 7–21. [Google Scholar] [CrossRef]
- Djaman, K.; Rudnick, D.R.; Moukoumbi, Y.D.; Sow, A.; Irmak, S. Actual Evapotranspiration and Crop Coefficients of Irrigated Lowland Rice (Oryza sativa L.) under Semiarid Climate. Ital. J. Agron. 2019, 14, 19–25. [Google Scholar] [CrossRef]
- Islam, M.D.; Di, L.; Qamer, F.M.; Shrestha, S.; Guo, L.; Lin, L.; Mayer, T.J.; Phalke, A.R. Rapid Rice Yield Estimation Using Integrated Remote Sensing and Meteorological Data and Machine Learning. Remote Sens. 2023, 15, 2374. [Google Scholar] [CrossRef]
- Santos, C.; Lorite, I.J.; Tasumi, M.; Allen, R.G.; Fereres, E. Performance Assessment of an Irrigation Scheme Using Indicators Determined with Remote Sensing Techniques. Irrig. Sci. 2010, 28, 461–477. [Google Scholar] [CrossRef]
- Novoa, V.; Rojas, O.; Arumí, J.L.; Ulloa, C.; Urrutia, R.; Rudolph, A. Variability of the Water Footprint of Cereal Crops, Cachapoal River, Chile. Tecnol. Cienc. Agua 2016, 7, 35–50. [Google Scholar]
- Senay, G.B.; Budde, M.E.; Verdin, J.P. Enhancing the Simplified Surface Energy Balance (SSEB) Approach for Estimating Landscape ET: Validation with the METRIC Model. Agric. Water Manag. 2011, 98, 606–618. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Thorp, K.R. Remote Sensing of Evapotranspiration over Cotton Using the TSEB and METRIC Energy Balance Models. Remote Sens. Environ. 2015, 158, 281–294. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Ortega-Salazar, S.; Poblete, T.; Kilic, A.; Allen, R.; Poblete-Echeverría, C.; Ahumada-Orellana, L.; Zuñiga, M.; Sepúlveda, D. Estimation of Energy Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV). Remote Sens. 2016, 8, 638. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Q.; Zhang, J. Moderate Wetting and Drying Increases Rice Yield and Reduces Water Use, Grain Arsenic Level, and Methane Emission. Crop J. 2017, 5, 151–158. [Google Scholar] [CrossRef]
- Heros, E.; Gómez, L.; Sosa, G. Use of Selection Indices in the Identification of Drought Tolerant Rice (Oryza sativa L.) Genotypes. Prod. Agropecu. Y Desarro. Sosten. 2014, 2, 11–31. [Google Scholar] [CrossRef]
- Albrizio, R.; Puig-Sirera, À.; Sellami, M.H.; Guida, G.; Basile, A.; Bonfante, A.; Gambuti, A.; Giorio, P. Water Stress, Yield, and Grape Quality in a Hilly Rainfed “Aglianico” Vineyard Grown in Two Different Soils along a Slope. Agric. Water Manag. 2023, 279, 108183. [Google Scholar] [CrossRef]
- Fan, L.; Gao, Y.; Brück, H.; Bernhofer, C. Investigating the Relationship between NDVI and LAI in Semi-Arid Grassland in Inner Mongolia Using in-Situ Measurements. Theor. Appl. Clim. 2009, 95, 151–156. [Google Scholar] [CrossRef]
- Caldas Cueva, J.F.; Lizárraga Travaglini, A.D.; Vásquez Pérez, H. Guía Técnica: Manejo del Cultivo de Arroz Bajo el Sistema de Riego con Secas Intermitentes en las Regiones de Tumbes, Piura, Lambayeque y la Libertad. Available online: https://repositorio.inia.gob.pe/handle/20.500.12955/1053 (accessed on 14 May 2024).
- INIA (Instituto Nacional de Innovación Agraria). INIA 515—CAPOTEÑA. Available online: https://repositorio.inia.gob.pe/bitstream/20.500.12955/1529/1/INIA_515_CAPOTE%C3%91A.pdf (accessed on 19 March 2024).
- Machaca-Pillaca, R.; Pino-Vargas, E.; Ramos-Fernández, L.; Quille-Mamani, J.; Torres-Rua, A. Estimation of Evapotranspiration for Irrigation Purposes in Real Time of an Olive Grove from Drone Images in Arid Areas, Case of La Yarada, Tacna, Peru. Idesia 2022, 40, 55–65. [Google Scholar] [CrossRef]
- Quispe-Tito, D.J.; Ramos-Fernández, L.; Pino-Vargas, E.; Quille-Mamani, J.; Torres-Rua, A. Use of RPAS for Precision Evapotranspiration in Rice Fields to Reduce Water Consumption. Agron. Mesoam. 2024, 35, 8–15. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Pintér, K.; Nagy, Z. Building a UAV Based System to Acquire High Spatial Resolution Thermal Imagery for Energy Balance Modelling. Sensors 2022, 22, 3251. [Google Scholar] [CrossRef]
- Mzid, N.; Cantore, V.; Albrizio, R.; D’urso, G.; Suwanlertcharoen, T.; Chaturabul, T.; Supriyasilp, T.; Pongput, K. Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand. Water 2023, 15, 450. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-Based ET Estimation in Agriculture Using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Acharya, B.; Sharma, V. Comparison of Satellite Driven Surface Energy Balance Models in Estimating Crop Evapotranspiration in Semi-Arid to Arid Inter-Mountain Region. Remote Sens. 2021, 13, 1822. [Google Scholar] [CrossRef]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated Calibration of the METRIC-Landsat Evapotranspiration Process. J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Bhattarai, N.; Quackenbush, L.J.; Im, J.; Shaw, S.B. A New Optimized Algorithm for Automating Endmember Pixel Selection in the SEBAL and METRIC Models. Remote Sens. Environ. 2017, 196, 178–192. [Google Scholar] [CrossRef]
- Elsadek, E.; Zhang, K.; Mousa, A.; Ezaz, G.T.; Tola, T.L.; Shaghaleh, H.; Hamad, A.A.A.; Alhaj Hamoud, Y. Study on the In-Field Water Balance of Direct-Seeded Rice with Various Irrigation Regimes under Arid Climatic Conditions in Egypt Using the AquaCrop Model. Agronomy 2023, 13, 609. [Google Scholar] [CrossRef]
- Nie, T.; Tang, Y.; Jiao, Y.; Li, N.; Wang, T.; Du, C.; Zhang, Z.; Chen, P.; Li, T.; Sun, Z.; et al. Effects of Irrigation Schedules on Maize Yield and Water Use Efficiency under Future Climate Scenarios in Heilongjiang Province Based on the AquaCrop Model. Agronomy 2022, 12, 810. [Google Scholar] [CrossRef]
- Amiri, E. Calibration and Testing of the Aquacrop Model for Rice under Water and Nitrogen Management. Commun. Soil Sci. Plant Anal. 2016, 47, 387–403. [Google Scholar] [CrossRef]
- Zeleke, K.T. AquaCrop Calibration and Validation for Faba Bean (Vicia faba L.) under Different Agronomic Managements. Agronomy 2019, 9, 320. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Pino, V.E.; Montalván, D.I.; Vera, M.A.; Ramos, F.L. Stomatal Conductance and Its Relationship with Leaf Temperature and Soil Moisture in Olive Cultivation (Olea europaea L.), in the Period of Fruit Ripening, in Arid Zones. La Yarada, Tacna, Perú. Idesia 2019, 37, 55–64. [Google Scholar] [CrossRef]
- Chu, R.; Li, M.; Shen, S.; Islam, A.R.M.T.; Cao, W.; Tao, S.; Gao, P. Changes in Reference Evapotranspiration and Its Contributing Factors in Jiangsu, a Major Economic and Agricultural Province of Eastern China. Water 2017, 9, 486. [Google Scholar] [CrossRef]
- Sisheber, B.; Marshall, M.; Ayalew, D.; Nelson, A. Tracking Crop Phenology in a Highly Dynamic Landscape with Knowledge-Based Landsat–MODIS Data Fusion. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102670. [Google Scholar] [CrossRef]
- Ali, A.M.; Savin, I.; Poddubskiy, A.; Abouelghar, M.; Saleh, N.; Abutaleb, K.; El-Shirbeny, M.; Dokukin, P. Integrated Method for Rice Cultivation Monitoring Using Sentinel-2 Data and Leaf Area Index. Egypt. J. Remote Sens. Space Sci. 2021, 24, 431–441. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, K.; Lin, Z.; Fang, S.; Wu, X.; Zhu, R.; Peng, Y. Remote Estimation of Leaf Area Index (LAI) with Unmanned Aerial Vehicle (UAV) Imaging for Different Rice Cultivars throughout the Entire Growing Season. Plant Methods 2021, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Serrano Reyes, J.; Jiménez, J.U.; Quirós-McIntire, E.I.; Sanchez-Galan, J.E.; Fábrega, J.R. Comparing Two Methods of Leaf Area Index Estimation for Rice (Oryza sativa L.) Using In-Field Spectroradiometric Measurements and Multispectral Satellite Images. AgriEngineering 2023, 5, 965–981. [Google Scholar] [CrossRef]
- Morton, C.G.; Huntington, J.L.; Pohll, G.M.; Allen, R.G.; Mcgwire, K.C.; Bassett, S.D. Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 549–562. [Google Scholar] [CrossRef]
- Nassar, A.; Torres-Rua, A.; Kustas, W.; Alfieri, J.; Hipps, L.; Prueger, J.; Nieto, H.; Alsina, M.M.; White, W.; McKee, L.; et al. Assessing Daily Evapotranspiration Methodologies from One-Time-of-Day SUAS and EC Information in the GRAPEX Project. Remote Sens. 2021, 13, 2887. [Google Scholar] [CrossRef]
- Gevaerd Montibeller, Á. Estimating Energy Fluxes and Evapotranspiration of Corn and Estimating Energy Fluxes and Evapotranspiration of Corn and Soybean with an Unmanned Aircraft System in Ames, Iowa Soybean with an Unmanned Aircraft System in Ames, Iowa; University of Northern Iowa: Cedar Falls, IA, USA, 2017. [Google Scholar]
- Liu, X.; Xu, J.; Yang, S.; Zhang, J. Rice Evapotranspiration at the Field and Canopy Scales under Water-Saving Irrigation. Meteorol. Atmos. Phys. 2018, 130, 227–240. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Senay, G.; Müller, R.; Thenkabail, P.S. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sens. 2016, 8, 983. [Google Scholar] [CrossRef]
- Ferreira, S.; Sánchez, J.M.; Gonçalves, J.M. A Remote-Sensing-Assisted Estimation of Water Use in Rice Paddy Fields: A Study on Lis Valley, Portugal. Agronomy 2023, 13, 1357. [Google Scholar] [CrossRef]
- Xie, H.; Hu, X.; Luo, Y.; Xu, Y.; Huang, P.; Yuan, D.; Song, C.; Cui, Y.; Li, Y. Spatiotemporal Variation in Rice Evapotranspiration under the Influence of Rice Expansion: A Case Study in the Sanjiang Plain, Northeast China. Authorea Prepr. 2023, 22, 535–550. [Google Scholar] [CrossRef]
- Neira Huamán, E.; Ramos Fernández, L.; Razuri Ramírez, L.R. Coefficient of Cropping (Kc) of Rice from Drain Lysimeter in The Molina, Lima-Perú. Idesia 2020, 38, 49–55. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Fu, W.; Li, F. The Influence of Shallow Groundwater on the Physicochemical Properties of Field Soil, Crop Yield, and Groundwater. Agriculture 2024, 14, 341. [Google Scholar] [CrossRef]
- Hirayama, M.; Wada, Y.; Nemoto, H. Estimation of Drought Tolerance Based on Leaf Temperature in Upland Rice Breeding. Breed. Sci. 2006, 56, 47–54. [Google Scholar] [CrossRef]
- Alauddin, M.; Rashid Sarker, M.A.; Islam, Z.; Tisdell, C. Adoption of Alternate Wetting and Drying (AWD) Irrigation as a Water-Saving Technology in Bangladesh: Economic and Environmental Considerations. Land Use Policy 2020, 91, 104430. [Google Scholar] [CrossRef]
- Ishfaq, M.; Akbar, N.; Zulfiqar, U.; Ali, N.; Shah, F.; Anjum, S.A.; Farooq, M. Economic Assessment of Water-Saving Irrigation Management Techniques and Continuous Flooded Irrigation in Different Rice Production Systems. Paddy Water Environ. 2022, 20, 37–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Li, S.; Zhu, K.; Hua, X.; Harrison, M.T.; Liu, K.; Yang, J.; Liu, L.; Chen, Y. Integrated Management Approaches Enabling Sustainable Rice Production under Alternate Wetting and Drying Irrigation. Agric. Water Manag. 2023, 281, 108265. [Google Scholar] [CrossRef]
Flight | DPS | Phenology | |||
---|---|---|---|---|---|
CF | |||||
1 | 38 | Seedling | Seedling | Seedling | Seedling |
2 | 61 | Tillering | Tillering | Tillering | Tillering |
3 | 65 | Tillering | Tillering | Tillering | Tillering |
4 | 75 | Tillering | Tillering | Tillering | Tillering |
5 | 79 | Tillering | Tillering | Tillering | Tillering |
6 | 88 | Tillering | Tillering | Tillering | Tillering |
7 | 92 | Maximum tillering | Tillering | Tillering | Tillering |
8 | 103 | Panicle initiation | Maximum tillering | Maximum tillering | Maximum tillering |
9 | 107 | Panicle initiation | Panicle initiation | Panicle initiation | Panicle initiation |
10 | 123 | Heading stage | Heading stage | Heading stage | Heading stage |
11 | 127 | Flowering stage | Flowering stage | Flowering stage | Flowering stage |
12 | 147 | Dough stage | Dough stage | Dough stage | Dough stage |
13 | 149 | Maturity stage | Maturity stage | Maturity stage | Maturity stage |
Date | DPS | Pixel | Coordinate (WGS84, UTM) | NDVI | LAI | Albedo | T (K) | Calibration Constants | ||
---|---|---|---|---|---|---|---|---|---|---|
X | Y | a | b | |||||||
11-Feb. | 38 | Cold | 633,648.78 | 9,255,632.41 | 0.72 | 2.78 | 0.25 | 298.96 | 0.382 | −111.531 |
Hot | 633,637.75 | 9,255,631.10 | 0.02 | 0.05 | 0.22 | 307.51 | ||||
6-Mar. | 61 | Cold | 633,644.81 | 9,255,650.83 | 0.77 | 3.68 | 0.22 | 302.40 | 0.345 | −100.349 |
Hot | 633,632.07 | 9,255,701.91 | 0.15 | 0.11 | 0.15 | 311.10 | ||||
10-Mar. | 65 | Cold | 633,613.16 | 9,255,672.40 | 0.84 | 5.43 | 0.21 | 301.26 | 0.636 | −187.402 |
Hot | 633,606.73 | 9,255,734.94 | 0.14 | 0.10 | 0.15 | 306.29 | ||||
20-Mar. | 75 | Cold | 633,629.01 | 9,255,674.63 | 0.85 | 5.88 | 0.27 | 302.12 | 0.245 | −71.220 |
Hot | 633,635.03 | 9,255,702.95 | 0.14 | 0.10 | 0.26 | 318.34 | ||||
24-Mar. | 79 | Cold | 633,619.50 | 9,255,642.26 | 0.88 | 6.13 | 0.29 | 300.35 | 0.166 | −46.459 |
Hot | 633,634.97 | 9255,708.46 | 0.16 | 0.68 | 0.22 | 321.88 | ||||
2-Apr. | 88 | Cold | 633,620.37 | 9,255,642.46 | 0.90 | 6.63 | 0.33 | 300.60 | 0.322 | −92.839 |
Hot | 633,634.20 | 9,255,704.54 | 0.24 | 0.88 | 0.20 | 308.65 | ||||
6-Apr. | 92 | Cold | 633,626.61 | 9,255,689.27 | 0.93 | 6.17 | 0.35 | 299.17 | 0.340 | −99.414 |
Hot | 633,595.26 | 9,255,717.95 | 0.22 | 0.88 | 0.17 | 308.14 | ||||
17-Apr. | 103 | Cold | 633,622.01 | 9,255,705.07 | 0.91 | 7.73 | 0.32 | 300.48 | 0.152 | −41.320 |
Hot | 633,595.07 | 9,255,719.49 | 0.24 | 0.22 | 0.17 | 311.56 | ||||
21-Apr. | 107 | Cold | 633,604.20 | 9255,713.17 | 0.91 | 7.61 | 0.32 | 296.76 | 0.271 | −77.976 |
Hot | 633,616.79 | 9,255,726.50 | 0.26 | 0.25 | 0.15 | 308.15 | ||||
7-May. | 123 | Cold | 633,643.04 | 9,255,650.77 | 0.86 | 6.99 | 0.30 | 297.11 | 0.185 | −53.158 |
Hot | 633,595.89 | 9,255,711.76 | 0.20 | 0.18 | 0.20 | 317.35 | ||||
11-May. | 127 | Cold | 633,625.31 | 9,255,645.13 | 0.84 | 6.42 | 0.29 | 300.27 | 0.323 | −95.512 |
Hot | 633,616.16 | 9,255,723.40 | 0.22 | 0.20 | 0.18 | 314.58 | ||||
31-May. | 147 | Cold | 633,640.25 | 9,255,683.39 | 0.84 | 6.69 | 0.24 | 300.83 | 0.198 | −56.978 |
Hot | 633,618.06 | 9,255,723.40 | 0.28 | 0.29 | 0.22 | 317.79 | ||||
2-Jun. | 149 | Cold | 633,640.53 | 9,255,683.74 | 0.86 | 7.05 | 0.33 | 298.01 | 0.129 | −34.544 |
Hot | 633,610.07 | 9,255,724.46 | 0.26 | 0.25 | 0.20 | 315.67 |
Irrigation Management | EF | RSR | d | Rating (*) | R (**) |
---|---|---|---|---|---|
CF | 0.66 | 0.56 | 0.92 | G, G, V | 0.96 |
AWD5 | 0.43 | 0.72 | 0.88 | A, U, G | 0.92 |
AWD10 | 0.55 | 0.65 | 0.89 | S, S, G | 0.92 |
AWD20 | 0.47 | 0.71 | 0.89 | A, U, G | 0.97 |
Description | Irrigation Management | |||
---|---|---|---|---|
CF | ||||
Normalized water productivity WP (g m−2) | 19 | 19 | 19 | 19 |
Reference harvest index HI (%) | 53 | 53 | 53 | 53 |
Upper temperature (°C) | 30 | 30 | 30 | 30 |
Base temperature (°C) | 10 | 10 | 10 | 10 |
Time from transplanting to recovery (DPS) | 33 | 33 | 33 | 36 |
Time from transplanting to flowering (DPS) | 103 | 103 | 99 | 110 |
Time from transplanting to starting senescence (DPS) | 134 | 134 | 134 | 136 |
Time from transplanting to maturity (DPS) | 156 | 156 | 149 | 149 |
Length of the flowering state (DPS) | 122 | 122 | 122 | 126 |
Time from maximum effective rooting depth (DPS) | 103 | 103 | 99 | 110 |
Initial canopy cover (% CCo) | 1.41 | 2.3 | 3.06 | 1.91 |
Soil surface covered by an individual seedling at 90% recovery (cm2/plant) | 7.8 | 12.5 | 17.2 | 10.5 |
Canopy growth coefficient CGC (% GDD−1) | 9.4 | 8.5 | 8.3 | 7.9 |
Maximum canopy cover CCx (%) | 79 | 69 | 59 | 51 |
Canopy decline coefficient CDC (% GDD−1) | 6 | 6 | 6 | 6 |
Maximum effective rooting depth (m) | 0.25 | 0.25 | 0.25 | 0.25 |
Soil evaporation coefficient (Ke) | 1.15 | 1.15 | 1.15 | 1.15 |
Crop transpiration coefficient (KcTr) | 1.28 | 1.28 | 1.28 | 1.28 |
Crop decrease coefficient (%/day) | 0.15 | 0.15 | 0.15 | 0.15 |
Irrigation Management | Precipitation | Irrigation | Capillary Rise | Percolation | Yield | WUE | |
---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | |||
CF | 169 | 1997 | 664 | 1641 | 823 | 14.01 ± 1.22 | 0.70 |
169 | 1428 | 562 | 1056 | 780 | 11.85 ± 0.64 | 0.83 | |
169 | 1434 | 583 | 1051 | 767 | 13.72 ± 2.08 | 0.96 | |
169 | 1447 | 579 | 1000 | 763 | 12.91 ± 2.53 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Fernández, L.; Peña-Amaro, R.; Huanuqueño-Murillo, J.; Quispe-Tito, D.; Maldonado-Huarhuachi, M.; Heros-Aguilar, E.; Flores del Pino, L.; Pino-Vargas, E.; Quille-Mamani, J.; Torres-Rua, A. Water Use Efficiency in Rice Under Alternative Wetting and Drying Technique Using Energy Balance Model with UAV Information and AquaCrop in Lambayeque, Peru. Remote Sens. 2024, 16, 3882. https://doi.org/10.3390/rs16203882
Ramos-Fernández L, Peña-Amaro R, Huanuqueño-Murillo J, Quispe-Tito D, Maldonado-Huarhuachi M, Heros-Aguilar E, Flores del Pino L, Pino-Vargas E, Quille-Mamani J, Torres-Rua A. Water Use Efficiency in Rice Under Alternative Wetting and Drying Technique Using Energy Balance Model with UAV Information and AquaCrop in Lambayeque, Peru. Remote Sensing. 2024; 16(20):3882. https://doi.org/10.3390/rs16203882
Chicago/Turabian StyleRamos-Fernández, Lia, Roxana Peña-Amaro, José Huanuqueño-Murillo, David Quispe-Tito, Mayra Maldonado-Huarhuachi, Elizabeth Heros-Aguilar, Lisveth Flores del Pino, Edwin Pino-Vargas, Javier Quille-Mamani, and Alfonso Torres-Rua. 2024. "Water Use Efficiency in Rice Under Alternative Wetting and Drying Technique Using Energy Balance Model with UAV Information and AquaCrop in Lambayeque, Peru" Remote Sensing 16, no. 20: 3882. https://doi.org/10.3390/rs16203882
APA StyleRamos-Fernández, L., Peña-Amaro, R., Huanuqueño-Murillo, J., Quispe-Tito, D., Maldonado-Huarhuachi, M., Heros-Aguilar, E., Flores del Pino, L., Pino-Vargas, E., Quille-Mamani, J., & Torres-Rua, A. (2024). Water Use Efficiency in Rice Under Alternative Wetting and Drying Technique Using Energy Balance Model with UAV Information and AquaCrop in Lambayeque, Peru. Remote Sensing, 16(20), 3882. https://doi.org/10.3390/rs16203882