Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spaceborne PMR Data
2.2. Validation and Comparison Data
2.3. Methodology for Intersensor Calibration
2.4. Methodology for SIC Algorithm (ABA) Tuning and Retrieval
2.4.1. Open Water Tie-Point Tuning
2.4.2. Open Ocean Mask Line Tuning
2.4.3. SIC Retrieval
2.5. Methodology for SIC Adjustment and SIE Retrieval
3. Results
3.1. SIC Validation
3.2. SIC Threshold to Estimate SIE Trends
3.3. SIE Trends
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1996. [Google Scholar] [CrossRef]
- Comiso, J.C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I and SMMR Data. J. Geophys. Res. 2008, 113, C02S07. [Google Scholar] [CrossRef]
- Long, D.G.; Brodzik, M.J. Optimum image formation for spaceborne microwave radiometer products. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2763–2779. [Google Scholar] [CrossRef] [PubMed]
- Comiso, J.C.; Meier, W.N.; Gersten, R. Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res.-Ocean. 2017, 122, 1226883–1226900. [Google Scholar] [CrossRef]
- Wentz, F.J. User’s Manual, SSM/I Antenna Temperature Tapes, 1st Revision; Technical Report 120191; Remote Sensing Systems: Santa Rosa, CA, USA, 1991. [Google Scholar]
- Wentz, F.J. User’s Manual, SSM/I Antenna Temperature Tapes, 2nd Revision; Technical Report 120193; Remote Sensing Systems: Santa Rosa, CA, USA, 1993. [Google Scholar]
- Wentz, F.J. User’s Manual, SSM/I Antenna Temperature, Version 6; Technical Memo 082806; Remote Sensing Systems: Santa Rosa, CA, USA, 2006. [Google Scholar]
- Lin, G.; Li, L.; Weiser, P. Sea ice retrievals from Windsat data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 730–733. [Google Scholar]
- Njoku, E.G.; Rague, B.; Fleming, K. The Nimbus-7 SMMR Pathfinder Brightness Temperature Data Set; Jet Propulsion Laboratory Publication: Pasadena, CA, USA, 1999. [Google Scholar]
- Gaiser, P.W.; Germain, K.M.S.; Twarog, E.M.; Poe, G.A.; Purdy, W.; Richardson, D.; Grossman, W.; Jones, W.L.; Spencer, D.; Golba, G.; et al. The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2347–2361. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS cloud-top property refinement for collection 6. J. Appl. Meteorol. Climatol. 2012, 51, 1145–1163. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Ackerman, S.A. Sea ice extent and classification mapping with the moderate resolution imaging spectroradiometer airborne simulator. Remote Sens. Environ. 1999, 68, 152–163. [Google Scholar] [CrossRef]
- Fetterer, F.; Fowler, C. National Ice Center Arctic Sea Ice Charts and Climatology; NSIDC: Boulder, CO, USA, 2006. [Google Scholar]
- Fetterer, F. A Selection of Documentation Related to National Ice Center Sea Ice Charts in Digital Format; National Snow and Ice Data Center (NSIDC): Boulder, CO, USA, 2006. [Google Scholar]
- Fetterer, F.; Knowles, K.; Meiser, W.; Savoie, M.; Windnagel, A.K. Sea Ice Index, Version 3; NSIDC National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar]
- Stroeve, J.; Meier, W.N. Sea Ice Trends and Climatologies from SMMR and SSM/I-SSMIS. (NSIDC-0192, Version 3); NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- OSI SAF Sea Ice Index 1978-Onwards, Version 2.1, OSI-420; EUMETSAT Ocean and Sea Ice Satellite Application Facility: Darmstadt, Germany, 2020.
- DiGirolamo, N.; Parkinson, C.L.; Cavalieri, D.J.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. (NSIDC-0051, Version 2); NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- OSI SAF: Global Sea Ice Concentration Climate Data Record 1978–2020, (OSI-450-a, v3.0); EUMETSAT Ocean and Sea Ice Satellite Application Facility: Darmstadt, Germany, 2022. [CrossRef]
- Comiso, J.C.; Parkinson, C.L. Arctic sea ice parameters from AMSR-E data using two techniques and comparison with sea ice from SSM/I. J. Geophys. Res. 2008, 113, C02S05. [Google Scholar] [CrossRef]
- Comiso, J.C. Enhanced sea ice concentrations and ice extents from AMSR-E data. J. Remote Sens. Jpn. 2009, 29, 199–215. [Google Scholar]
- Cho, K.; Sasaki, N.; Shimoda, H.; Sakata, T.; Nishio, F. Evaluation and improvement of SSM/I sea ice concentration algorithms for the Sea of Okhotsk. J. Remote Sens. Jpn. 1996, 16, 47–58. [Google Scholar]
- Kurihara, Y.; Sakurai, T.; Kuragano, T. Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in-situ observations. Weather. Serv. Bull. 2006, 73, 1–18. (In Japanese) [Google Scholar]
- Bjørgo, E.; Johannessen, O.M.; Miles, M.W. Analysis of merged SMMR-SSMI time series of Arctic and Antarctic Sea ice parameters 1978–1995. Geophys. Res. Lett. 1997, 24, 413–416. [Google Scholar] [CrossRef]
- Gloersen, P.; Campbell, W.J.; Cavalieri, D.J.; Comiso, J.C.; Parkinson, C.L.; Zwally, H.J. Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice 1978–1987. Ann. Glaciol. 1993, 17, 149–154. [Google Scholar] [CrossRef]
- Lu, J.; Heygster, G.; Spreen, G. Atmospheric correction of sea ice concentration retrieval for 89 GHz AMSR-E observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1442–1457. [Google Scholar] [CrossRef]
- Tonboe, R.T.; Eastwood, S.; Lavergne, T.; Sørensen, A.M.; Rathmann, N.; Dybkjær, G.; Pedersen, L.T.; Høyer, J.L.; Kern, S. The EUMETSAT sea ice concentration climate data record. Cryosphere 2016, 10, 2275–2290. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Markus, T.; Hall, D.K.; Ivanoff, A.; Glick, E. Assessment of AMSR-E Antarctic winter sea-ice concentrations using Aqua MODIS. IEEE Tran. Geosci. Remote Sens. 2010, 48, 1442–1457. [Google Scholar] [CrossRef]
- Kern, S.; Rösel, A.; Pedersen, L.T.; Ivanova, N.; Saldo, R.; Tonboe, R.T. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations. Cryosphere 2016, 10, 2217–2239. [Google Scholar] [CrossRef]
- Meier, W.N.; Stewart, J.S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 2019, 14, 035005. [Google Scholar] [CrossRef]
- Kern, S.; Lavergne, T.; Notz, D.; Pedersen, L.T.; Tonboe, R.T.; Saldo, R.; Sørensen, A.M. Satellite passive microwave sea-ice concentration data set intercomparison: Closed ice and ship-based observations. Cryosphere 2019, 13, 3261–3307. [Google Scholar] [CrossRef]
Instrument | SMMR | SSM/I | AMSR-E | WindSat | AMSR2 |
---|---|---|---|---|---|
Aboard satellite | NASA Nimbus-7 | U.S. Defense Meteorological Satellite Program (DMSP) F08, F10, F13 | NASA Earth Observing System (EOS) Aqua | Coriolis | JAXA Global Change Observation Mission—Water (GCOM-W) |
Available period | 1 November 1978–15 July 1987 | F08: 16 July 1987–17 December 1991 F10: 18 December 1991–17 May 1995 F13: 18 May 1995–20 June 2002 | June 21, 2002–3 October 2011 | 4 October 2011–23 July 2012 | 24 July 2012–present |
Algorithm frequencies (GHz) | 37.0 V, 37.0 H, 18.0 V | 37.0 V, 37.0 H, 19.35 V, 22 V | 36.5 V, 36.5 H, 18.7 V, 23.8 V, 6.925 V | 37.0 V, 37.0 H, 18.7 V, 23.8 V | 36.5 V, 36.5 H, 18.7 V, 23.8 V, 6.925 V |
Incidence angle (°) | 50 | 53.1 | 55 | 53 (37.0 G) 55.3 (18.7 G) | 55 |
Swath width (km) | 780 | 1400 | 1450 | 1000 | 1450 (nominal) 1600 (effective) |
IFOV (km) | 27 × 18 37.0 GHz L1B | 38 × 30 37.0 GHz L1B | 14.4 × 8.2 36.5 GHz L1B | 27 × 16 18.7 GHz SDR | 26 × 15 23.8 GHz L1R |
Original spatial resolution at 36.5 or 37.0 GHz (km) | 27 × 18 at 37.0 GHz | 38 × 30 at 37.0 GHz | 14.4 × 8.2 at 36.5 GHz | 13 × 8 at 37.0 GHz | 12 × 7 at 36.5 GHz |
Purpose of Use | Dataset | Sensor | Sea Ice Concentration Algorithm | Gridded Resolution (km) | Data Provider |
---|---|---|---|---|---|
SIC validation | Sea Ice Flag (MYD29) | MODIS | Sea Ice Cloud Flag | 1 | NASA |
SIC validation | Ice Chart MASIE | Multiple | Manual interpolation | 1 | U.S. National Ice Center, NSIDC |
SIE comparison | Sea Ice Index (G02135) | F17&F18 SSMIS | NASA team | 25 | NSIDC |
SIE comparison | Sea Ice Extent (NSIDC-0192) | F17 SSMIS | Goddard Bootstrap | 25 | NASA Goddard, NSIDC |
SIE comparison | Sea Ice Extent (OSI-420) | SSM/I | OSI-SAF (Bristol/ Bootstrap) | 25 | EUMETSAT |
SIC (%) | 0 | 10–30 | 30–50 | 50–70 | 70–90 | 90–100 | Average |
---|---|---|---|---|---|---|---|
Bias (N/S) | 0.7/0.1 | 2.2/0.2 | −3.2/−7.0 | −12.3/−17.6 | −5.3/−12.4 | −1.7/−4.4 | −3.2/−6.8 |
RMSE (N/S) | 5.4/3.0 | 20.6/16.8 | 19.0/19.1 | 21.0/23.4 | 18.7/21.7 | 5.4/8.8 | 15.0/15.5 |
Instrument | SMMR | SSM/I | AMSR-E | WindSat | AMSR2 |
---|---|---|---|---|---|
Earth incidence angle (°) | 50 | 53.1 | 55 | 53 (36 G) 55.3 (18 G) | 55 |
IFOV (km) | 27 × 18 36 G L1B | 38 × 30 36 G L1B | 14.4 × 8.2 36 G L1B | 27 × 16 18 G SDR | 26 × 15 23 G L1R |
SIC threshold value (%) | 22 | 21 | 15 | 19 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seki, M.; Hori, M.; Naoki, K.; Kachi, M.; Imaoka, K. Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations. Remote Sens. 2024, 16, 3549. https://doi.org/10.3390/rs16193549
Seki M, Hori M, Naoki K, Kachi M, Imaoka K. Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations. Remote Sensing. 2024; 16(19):3549. https://doi.org/10.3390/rs16193549
Chicago/Turabian StyleSeki, Mieko, Masahiro Hori, Kazuhiro Naoki, Misako Kachi, and Keiji Imaoka. 2024. "Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations" Remote Sensing 16, no. 19: 3549. https://doi.org/10.3390/rs16193549
APA StyleSeki, M., Hori, M., Naoki, K., Kachi, M., & Imaoka, K. (2024). Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations. Remote Sensing, 16(19), 3549. https://doi.org/10.3390/rs16193549