A Novel Framework for Spatiotemporal Susceptibility Prediction of Rainfall-Induced Landslides: A Case Study in Western Pennsylvania
Abstract
:1. Introduction
2. Study Area and Landslide Causative Factors
2.1. Landslide Inventories
2.2. Landslide Causative Factors
2.2.1. Static Factors
2.2.2. Time-Varying Factors
3. ML Algorithms and Evaluation Methods
4. ML for Spatial LSM
4.1. Spatial Landslide Sampling Method
4.2. Results of Spatial ML
5. ML for Spatiotemporal LSM
5.1. Spatiotemporal Landslide Sampling Method
5.2. Results of Spatiotemporal ML
5.2.1. ML Results
5.2.2. Spatiotemporal LSM
5.3. Computational Efficiency of Spatiotemporal LSM Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, X.; Zhang, L.; Luo, J.; Liu, D. A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping. Nat. Hazards 2021, 109, 471–497. [Google Scholar] [CrossRef]
- Xing, Y.; Yue, J.; Guo, Z.; Chen, Y.; Hu, J.; Travé, A. Large-scale landslide susceptibility mapping using an integrated machine learning model: A case study in the Lvliang Mountains of China. Front. Earth Sci. 2021, 9, 622. [Google Scholar] [CrossRef]
- Pei, T.; Qiu, T. Landslide susceptibility mapping using physics-guided machine learning: A case study of a debris flow event in Colorado Front Range. Acta Geotech. 2024; in press. [Google Scholar] [CrossRef]
- Pei, T.; Qiu, T. Landslide Susceptibility Mapping Using Machine Learning Methods: A Case Study in Colorado Front Range, USA. Geo-Congress 2023, 2023, 521–530. [Google Scholar] [CrossRef]
- Pei, T.; Qiu, T. Debris flow susceptibility mapping in Colorado Front Range, USA: A comparison of physics-based and data-driven approaches. In Proceedings of the 8th International Conference on Debris Flow Hazard Mitigation (DFHM8), Torino, Italy, 26–29 June 2023. E3S Web of Conferences. [Google Scholar] [CrossRef]
- Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Chacon, J.; Irigaray, C.; Fernandez, T.; El-Hamdouni, R. Engineering geology maps: Landslides and geographical information systems. Bull. Eng. Geol. Environ. 2006, 65, 341–411. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2007, 4, 33–41. [Google Scholar] [CrossRef]
- Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Youssef, A.M. Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models. Environ. Earth Sci. 2015, 73, 8499–8518. [Google Scholar] [CrossRef]
- Wang, Y.; Song, C.; Lin, Q.; Li, J. Occurrence probability assessment of earthquake-triggered landslides with Newmark displacement values and logistic regression: The Wenchuan earthquake, China. Geomorphology 2016, 258, 108–119. [Google Scholar] [CrossRef]
- Corominas, J.; Van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Xiong, J.; Pei, T.; Qiu, T. Spatiotemporal Prediction of Rainfall-induced Landslides Using Machine Learning Techniques. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2024; Volume 1337. [Google Scholar]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Moziihrii, A.; Khwairakpam, A.; Arnab, K.M.; Elzbieta, J.; Radomir, G.; Zbigniew, L.; Michał, J. Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sens. 2022, 14, 3029. [Google Scholar] [CrossRef]
- Rosi, A.; Peternel, T.; Jemec-Auflič, M.; Komac, M.; Segoni, S.; Casagli, N. Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 2016, 13, 1571–1577. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 2017, 290, 39–57. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Liu, W.; Huang, J.; Hong, H.; Chen, W. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108236. [Google Scholar] [CrossRef]
- Khalili, M.A.; Guerriero, L.; Pouralizadeh, M.; Calcaterra, D.; Martire, D.D. Monitoring and prediction of landslide-related deformation based on the GCN-LSTM algorithm and SAR imagery. Nat. Hazards 2023, 119, 39–68. [Google Scholar] [CrossRef]
- Nava, L.; Carraro, E.; Reyes-Carmona, C.; Puliero, S.; Bhuyan, K.; Rosi, A.; Monserrat, O.; Floris, M.; Meena, S.R.; Galve, J.P.; et al. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 2023, 20, 2111–2129. [Google Scholar] [CrossRef]
- Delano, H.L.; Wilshusen, J.P. Landslides in Pennsylvania (2nd ed.): Pennsylvania Geological Survey, 4th ser., Educational Series 9, 2001, 34p. Available online: https://maps.dcnr.pa.gov/publications/Default.aspx?id=272 (accessed on 2 September 2024).
- Pomeroy, J.S.; William, E.D. Landslides and Related Features, Pennsylvania-Pittsburgh 1° × 2° Sheet; US Geological Survey: Reston, VA, USA, 1979. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerner-Lam, A. A global landslide catalog for hazard applications: Method, results, and limitations. Nat. Hazards 2010, 52, 561–575. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping: A survey and a case study. In Landslides: Theory, Practice and Modelling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 283–301. [Google Scholar]
- Beyabanaki, S.A.R.; Bagtzoglou, A.C.; Anagnostou, E.N. Effects of groundwater table position, soil strength properties and rainfall on instability of earthquake-triggered landslides. Environ. Earth Sci. 2016, 75, 358. [Google Scholar] [CrossRef]
- Zhang, M.; Singh, H.V.; Migliaccio, K.W.; Kisekka, I. Evaluating water table response to rainfall events in a shallow aquifer and canal system. Hydrol. Process. 2017, 31, 3907–3919. [Google Scholar] [CrossRef]
- Crozier, M.J. Landslides: Causes, Consequences and Environment; Croom Helm: Beckenham, UK, 1986; pp. 171–192. [Google Scholar]
- Patton, A.I.; Luna, L.V.; Roering, J.J.; Jacobs, A.; Korup, O.; Mirus, B.B. Landslide initiation thresholds in data-sparse regions: Application to landslide early warning criteria in Sitka, Alaska, USA. Nat. Hazards Earth Syst. Sci. 2023, 23, 3261–3284. [Google Scholar] [CrossRef]
- Nolasco-Javier, D.; Kumar, L. Deriving the rainfall threshold for shallow landslide early warning during tropical cyclones: A case study in northern Philippines. Nat. Hazards 2018, 90, 921–941. [Google Scholar] [CrossRef]
- Kim, S.W.; Chun, K.W.; Kim, M.; Catani, F.; Choi, B.; Seo, J. Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides 2021, 18, 569–582. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Ballabio, C.; Sterlacchini, S. Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy. Math Geosci. 2012, 44, 47–70. [Google Scholar] [CrossRef]
- Zhang, W.; He, Y.; Wang, L.; Liu, S.; Meng, X. Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing. Geol. J. 2023, 58, 2372–2387. [Google Scholar] [CrossRef]
- Akosah, S.; Gratchev, I.; Kim, D.-H.; Ohn, S.-Y. Application of Artificial Intelligence and Remote Sensing for Landslide Detection and Prediction: Systematic Review. Remote Sens. 2024, 16, 2947. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Y.; Li, W.; Catani, F.; Song, G.; Huang, J.; Yu, C. Uncertainties of landslide susceptibility prediction: Influences of different study area scales and mapping unit scales. Int. J. Coal. Sci. Technol. 2024, 11, 26. [Google Scholar] [CrossRef]
- Woodard, J.B.; Mirus, B.B.; Crawford, M.M.; Or, D.; Leshchinsky, B.A.; Allstadt, K.E.; Wood, N.J. Mapping landslide susceptibility over large regions with limited data. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006810. [Google Scholar] [CrossRef]
- Luna, L.V.; Korup, O. Seasonal Landslide Activity Lags Annual Precipitation Pattern in the Pacific Northwest. Geophys. Res. Lett. 2022, 49, e2022GL098506. [Google Scholar] [CrossRef]
- Rohan, T.J.; Wondolowski, N.; Shelef, E. Landslide susceptibility analysis based on citizen reports. Earth Surf. Process. Landf. 2021, 46, 791–803. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.; Zhou, H.; Gan, F.; Yao, L.; Zhou, Q.; An, Y. An interpretable and high-precision method for predicting landslide displacement using evolutionary attention mechanism. Nat. Hazards, 2024; in press. [Google Scholar] [CrossRef]
- Violos, J.; Psomakelis, E.; Danopoulos, D.; Tsanakas, S.; Varvarigou, T. Using LSTM Neural Networks as Resource Utilization Predictors: The Case of Training Deep Learning Models on the Edge. In Economics of Grids, Clouds, Systems, and Services; Springer: Cham, Switzerland, 2020; pp. 67–74. [Google Scholar] [CrossRef]
- Rahimzad, M.; Moghaddam Nia, A.; Zolfonoon, H.; Soltani, J.; Danandeh Mehr, A.; Kwon, H.H. Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting. Water Resour. Manag. 2021, 35, 4167–4187. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
Causative Factor | Unit | Data Resolution | Data Source |
---|---|---|---|
Elevation | m | 30 m | NASADEM |
Slope | deg | ||
Aspect | deg | ||
Multi-scale topographic position index (mTPI) | m | ||
Profile curvature | - | ||
Plan curvature | - | ||
Topographic wetness index (TWI) | - | ||
Stream power index (SPI) | - | ||
Normalized difference vegetation index (NDVI) | - | ||
Sand content | % | 250 m | OpenLandMap |
Clay content | % | ||
Bulk density | 10 kg/m3 | ||
Texture classification | - | ||
Field capacity | % |
Model | Accuracy | Precision | Recall | F1 | AUC | Hyperparameters |
---|---|---|---|---|---|---|
LR | 0.775 | 0.763 | 0.800 | 0.780 | 0.847 | Slover: LBFGS; penalty: L1; C: 0.2 |
SVM | 0.775 | 0.755 | 0.813 | 0.783 | 0.850 | Kernel: RBF; C:10; gamma: 0.0001 |
RF | 0.792 | 0.777 | 0.821 | 0.798 | 0.868 | n_estimators: 80; min_samples_split: 2; min_samples_leaf: 6; max_depth: 10 |
GBM | 0.795 | 0.775 | 0.833 | 0.802 | 0.871 | learning rate: 0.1; n_estimators: 50; min_samples_split: 2; min_samples_leaf: 1; max_depth: 3 |
Avg. | 0.784 | 0.768 | 0.817 | 0.791 | 0.859 |
Dataset Number | Accuracy | Precision | Recall | F1 Score | AUC Score |
1 | 0.71 | 0.72 | 0.69 | 0.71 | 0.77 |
2 | 0.72 | 0.73 | 0.69 | 0.71 | 0.79 |
3 | 0.75 | 0.77 | 0.70 | 0.73 | 0.81 |
4 | 0.76 | 0.78 | 0.72 | 0.75 | 0.83 |
5 | 0.77 | 0.80 | 0.70 | 0.75 | 0.84 |
6 | 0.78 | 0.79 | 0.74 | 0.76 | 0.85 |
7 | 0.79 | 0.81 | 0.72 | 0.77 | 0.86 |
8 | 0.78 | 0.79 | 0.76 | 0.77 | 0.86 |
Landslide Point | Latitude | Longitude | Susceptibility | |
---|---|---|---|---|
Pure Spatial ML Model | Spatiotemporal ML Model | |||
1 | −79.7970° | 40.0160° | 0.62 | 0.97 |
2 | −80.2379° | 39.8897° | 0.74 | 0.86 |
3 | −80.1696° | 39.9339° | 0.21 | 0.83 |
4 | −79.9229° | 40.0566° | 0.85 | 0.99 |
5 | −79.9359° | 40.0472° | 0.51 | 0.76 |
6 | −80.4378° | 40.0925° | 0.51 | 0.86 |
7 | −80.3647° | 40.0857° | 0.31 | 0.79 |
8 | −80.3642° | 40.0916° | 0.58 | 0.87 |
9 | −80.3771° | 40.3887° | 0.63 | 0.91 |
10 | −80.3804° | 40.1618° | 0.74 | 0.88 |
11 | −80.3695° | 40.1664° | 0.47 | 0.67 |
12 | −80.3701° | 40.1877° | 0.59 | 0.82 |
13 | −79.7883° | 40.2222° | 0.80 | 0.90 |
14 | −79.7886° | 40.2226° | 0.73 | 0.93 |
15 | −79.7877° | 40.2255° | 0.84 | 0.97 |
16 | −79.7304° | 40.3505° | 0.70 | 0.99 |
17 | −79.7274° | 40.3529° | 0.74 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Pei, T.; Qiu, T. A Novel Framework for Spatiotemporal Susceptibility Prediction of Rainfall-Induced Landslides: A Case Study in Western Pennsylvania. Remote Sens. 2024, 16, 3526. https://doi.org/10.3390/rs16183526
Xiong J, Pei T, Qiu T. A Novel Framework for Spatiotemporal Susceptibility Prediction of Rainfall-Induced Landslides: A Case Study in Western Pennsylvania. Remote Sensing. 2024; 16(18):3526. https://doi.org/10.3390/rs16183526
Chicago/Turabian StyleXiong, Jun, Te Pei, and Tong Qiu. 2024. "A Novel Framework for Spatiotemporal Susceptibility Prediction of Rainfall-Induced Landslides: A Case Study in Western Pennsylvania" Remote Sensing 16, no. 18: 3526. https://doi.org/10.3390/rs16183526
APA StyleXiong, J., Pei, T., & Qiu, T. (2024). A Novel Framework for Spatiotemporal Susceptibility Prediction of Rainfall-Induced Landslides: A Case Study in Western Pennsylvania. Remote Sensing, 16(18), 3526. https://doi.org/10.3390/rs16183526