Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention
Abstract
:1. Introduction
2. Coastline Definition and Classification
3. Related Works for Sea–Land Segmentation
4. Method
4.1. Motivation and Pipeline
4.2. Feature Pyramid Networks
4.3. Prompt Encoder
4.4. Fusion Decoder
5. Experiments and Analysis
5.1. Datasets
5.2. Experiment Setting
5.3. Results and Analysis
5.3.1. Quantitative Comparison
5.3.2. Qualitative Comparison
5.3.3. Calculation Speed
5.4. Ablation Studies
5.5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batista, C.M.; Suárez, A.; Saltarén, C.M.B. Novel method to delimitate and demarcate coastal zone boundaries. Ocean. Coast. Manag. 2017, 144, 105–119. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.N. Risk assessment as tool for coastal erosion management. Ocean. Coast. Manag. 2020, 186, 105099. [Google Scholar] [CrossRef]
- Slinger, J.; Stive, M.; Luijendijk, A. Nature-Based Solutions for Coastal Engineering and Management. Water 2021, 13, 976. [Google Scholar] [CrossRef]
- Mahrad, B.E.; Newton, A.; Icely, J.D.; Kacimi, I.; Abalansa, S.; Snoussi, M. Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: A review. Remote Sens. 2020, 12, 2313. [Google Scholar] [CrossRef]
- Jordan, P.; Fröhle, P. Bridging the gap between coastal engineering and nature conservation? A review of coastal ecosystems as nature-based solutions for coastal protection. J. Coast. Conserv. 2022, 26, 4. [Google Scholar] [CrossRef]
- Petrişor, A.I.; Hamma, W.; Nguyen, H.D.; Randazzo, G.; Muzirafuti, A.; Stan, M.I.; Tran, V.T.; Aştefănoaiei, R.; Bui, Q.T.; Vintilă, D.F.; et al. Degradation of coastlines under the pressure of urbanization and tourism: Evidence on the change of land systems from Europe, Asia and Africa. Land 2020, 9, 275. [Google Scholar] [CrossRef]
- Sun, W.; Chen, C.; Liu, W.; Yang, G.; Meng, X.; Wang, L.; Ren, K. Coastline extraction using remote sensing: A review. Giscience Remote Sens. 2023, 60, 2243671. [Google Scholar] [CrossRef]
- Apostolopoulos, D.N.; Nikolakopoulos, K.G. Assessment and quantification of the accuracy of low-and high-resolution remote sensing data for shoreline monitoring. ISPRS Int. J. Geo-Inf. 2020, 9, 391. [Google Scholar] [CrossRef]
- Zanutta, A.; Lambertini, A.; Vittuari, L. UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes. J. Mar. Sci. Eng. 2020, 8, 52. [Google Scholar] [CrossRef]
- Domingos, L.C.; Santos, P.E.; Skelton, P.S.; Brinkworth, R.S.; Sammut, K. A survey of underwater acoustic data classification methods using deep learning for shoreline surveillance. Sensors 2022, 22, 2181. [Google Scholar] [CrossRef]
- Song, B.; Liu, P.; Li, J.; Wang, L.; Zhang, L.; He, G.; Chen, L.; Liu, J. MLFF-GAN: A Multilevel Feature Fusion With GAN for Spatiotemporal Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Liu, P.; Li, J.; Wang, L.; He, G. Remote Sensing Data Fusion With Generative Adversarial Networks: State-of-the-art methods and future research directions. IEEE Geosci. Remote Sens. Mag. 2022, 10, 295–328. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Shen, Z.; Liao, J.; Chen, J.; Sun, S. Long time-series mapping and change detection of coastal zone land use based on google earth engine and multi-source data fusion. Remote Sens. 2021, 14, 1. [Google Scholar] [CrossRef]
- Cui, J.; Ji, W.; Wang, P.; Zhu, M.; Liu, Y. Spatial–temporal changes in land use and their driving forces in the circum-Bohai coastal zone of China from 2000 to 2020. Remote Sens. 2023, 15, 2372. [Google Scholar] [CrossRef]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A.S. Shoreline detection using optical remote sensing: A review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962. [Google Scholar] [CrossRef]
- Weng, L.; Gao, J.; Xia, M.; Lin, H. MSNet: Multifunctional Feature-Sharing Network for Land-Cover Segmentation. Remote Sens. 2022, 14, 5209. [Google Scholar] [CrossRef]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1290–1299. [Google Scholar]
- Dronkers, J. Definition Sketch of the Base Coastline. 2022. Available online: https://www.coastalwiki.org/wiki/File:BasisKustlijn.jpg (accessed on 1 July 2024).
- Contributors, A. Spectral Signature of Water. 2023. Available online: https://mungfali.com/explore/Spectral-Signature-of-Water (accessed on 1 July 2024).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Li, M.; Zheng, X. A second modified normalized difference water index (SMNDWI) in the case of extracting the shoreline. Mar. Sci. Bull 2016, 18, 15–27. [Google Scholar]
- Liu, H.; Jezek, K. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- Guo, Q.; Pu, R.; Li, J.; Cheng, J. A weighted normalized difference water index for water extraction using Landsat imagery. Int. J. Remote Sens. 2017, 38, 5430–5445. [Google Scholar] [CrossRef]
- Cheng, D.; Meng, G.; Xiang, S.; Pan, C. Efficient sea–land segmentation using seeds learning and edge directed graph cut. Neurocomputing 2016, 207, 36–47. [Google Scholar] [CrossRef]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Bruzzone, L.; Gao, C.; Li, B. Infrared Small Target Detection Based on Facet Kernel and Random Walker. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7104–7118. [Google Scholar] [CrossRef]
- Elkhateeb, E.; Soliman, H.; Atwan, A.; Elmogy, M.; Kwak, K.S.; Mekky, N. A novel coarse-to-Fine Sea-land segmentation technique based on Superpixel fuzzy C-means clustering and modified Chan-Vese model. IEEE Access 2021, 9, 53902–53919. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, Y.; Hu, J.; An, M. Coastline extraction from high-resolution multispectral images by integrating prior edge information with active contour model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4099–4109. [Google Scholar] [CrossRef]
- He, W.; Song, H.; Yao, Y. An Improved Region Merging Approach for SAR Complex Water Area Segmentation. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Jarabo-Amores, P.; Rosa-Zurera, M.; de la Mata-Moya, D.; Vicen-Bueno, R.; Maldonado-Bascon, S. Spatial-Range Mean-Shift Filtering and Segmentation Applied to SAR Images. IEEE Trans. Instrum. Meas. 2011, 60, 584–597. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.; Ranjan, R.; He, G.; Zhao, L. A Survey on Active Deep Learning: From Model Driven to Data Driven. ACM Comput. Surv. 2022, 54, 221:1–221:34. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Chen, L.; Xu, M.; Guo, X.; Zhao, L. A new multi-source remote sensing image sample dataset with high resolution for flood area extraction: GF-FloodNet. Int. J. Digit. Earth 2023, 16, 2522–2554. [Google Scholar] [CrossRef]
- Cui, B.; Jing, W.; Huang, L.; Li, Z.; Lu, Y. SANet: A sea–land segmentation network via adaptive multiscale feature learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 116–126. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Wang, Y.; Luo, Q. Sea and Land Segmentation of Optical Remote Sensing Images Based on U-Net Optimization. Remote Sens. 2022, 14, 4163. [Google Scholar] [CrossRef]
- Liu, T.; Liu, P.; Jia, X.; Chen, S.; Ma, Y.; Gao, Q. Sea-Land Segmentation of Remote Sensing Images Based on SDW-UNet. Comput. Syst. Sci. Eng. 2023, 45, 2. [Google Scholar] [CrossRef]
- Shamsolmoali, P.; Zareapoor, M.; Wang, R.; Zhou, H.; Yang, J. A novel deep structure U-Net for sea-land segmentation in remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3219–3232. [Google Scholar] [CrossRef]
- Cheng, D.; Meng, G.; Cheng, G.; Pan, C. SeNet: Structured edge network for sea–land segmentation. IEEE Geosci. Remote Sens. Lett. 2016, 14, 247–251. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yang, B.; Fu, X.; Sidiropoulos, N.D.; Hong, M. Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In Proceedings of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 3861–3870. [Google Scholar]
- Catherine Seale, Thomas Redfern, P.C. Sentinel-2 Water Edges Dataset. 2022. Available online: https://openmldata.ukho.gov.uk/ (accessed on 1 July 2024).
- Yang, T.; Jiang, S.; Hong, Z.; Zhang, Y.; Han, Y.; Zhou, R.; Wang, J.; Yang, S.; Tong, X.; Kuc, T. Sea-Land Segmentation Using Deep Learning Techniques for Landsat-8 OLI Imagery. Mar. Geod. 2020, 43, 105–133. [Google Scholar] [CrossRef]
- Seale, C.; Redfern, T.; Chatfield, P.; Luo, C.; Dempsey, K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. Remote Sens. Environ. 2022, 278, 113044. [Google Scholar] [CrossRef]
- ESA. Sentinel-2. 2024. Available online: https://sentiwiki.copernicus.eu/web/sentinel-2 (accessed on 1 July 2024).
- NASA. landsat-8. 2024. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-8/ (accessed on 1 July 2024).
- Chen, L.; Letu, H.; Fan, M.; Shang, H.; Tao, J.; Wu, L.; Zhang, Y.; Yu, C.; Gu, J.; Zhang, N.; et al. An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1 7 Civilian Satellites. J. Remote Sens. 2022, 2022, 9769536. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Kirillov, A.; Wu, Y.; He, K.; Girshick, R. Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9799–9808. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Contributors, M. MMSegmentation Development Toolkit. 2023. Available online: https://github.com/open-mmlab/mmsegmentation (accessed on 1 July 2024).
Model | SLGF | SWED | SLL8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mIoU | F1 | Pr | Acc | mIoU | F1 | Pr | Acc | mIoU | F1 | Pr | Acc | |
PMFormer | 0.9853 | 0.9938 | 0.9989 | 0.9973 | 0.9212 | 0.9433 | 0.9567 | 0.9487 | 0.9921 | 0.9972 | 0.9966 | 0.9975 |
BiseNet | 0.9136 | 0.9549 | 0.9549 | 0.9497 | 0.8455 | 0.9162 | 0.9157 | 0.9178 | 0.9819 | 0.9909 | 0.9916 | 0.9915 |
UNet | 0.9155 | 0.9559 | 0.9569 | 0.9485 | 0.8768 | 0.9343 | 0.9325 | 0.9357 | 0.983 | 0.9914 | 0.9925 | 0.9922 |
PSPNet | 0.9147 | 0.9555 | 0.9578 | 0.9554 | 0.8597 | 0.9244 | 0.9236 | 0.9259 | 0.9911 | 0.9955 | 0.9953 | 0.9958 |
Segformer | 0.9725 | 0.9861 | 0.9839 | 0.9861 | 0.8841 | 0.9384 | 0.9483 | 0.9397 | 0.9919 | 0.9959 | 0.9954 | 0.9965 |
Deeplabv3 | 0.9818 | 0.9908 | 0.9909 | 0.9915 | 0.7177 | 0.8356 | 0.8370 | 0.8361 | 0.9916 | 0.9958 | 0.9957 | 0.9959 |
FCN | 0.9779 | 0.9888 | 0.9889 | 0.9858 | 0.8433 | 0.9149 | 0.9136 | 0.9164 | 0.9901 | 0.9951 | 0.9948 | 0.9952 |
DaNet | 0.9975 | 0.9987 | 0.9988 | 0.9977 | 0.7864 | 0.8803 | 0.8787 | 0.8815 | 0.9898 | 0.9948 | 0.9947 | 0.9954 |
PointRend | 0.9798 | 0.9898 | 0.9898 | 0.9891 | 0.8119 | 0.8961 | 0.8941 | 0.9002 | 0.9901 | 0.9953 | 0.9950 | 0.9951 |
NDWI | 0.5968 | 0.7063 | 0.6207 | 0.7186 | 0.5635 | 0.6638 | 0.7801 | 0.7441 | 0.4692 | 0.6624 | 0.4924 | 0.8393 |
Model | SLGF | SWED | SLL8 | ||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd | |
PMFormer | 4.587 | 5.148 | 3.992 | 8.629 | 8.013 | 7.936 | 32.596 | 33.215 | 39.118 |
BiseNet | 1.679 | 1.678 | 1.582 | 3.9875 | 6.075 | 4.294 | 18.693 | 19.323 | 29.198 |
UNet | 1.737 | 1.481 | 1.357 | 3.480 | 3.725 | 4.700 | 17.634 | 17.854 | 18.346 |
PSPNet | 2.409 | 2.383 | 2.351 | 6.152 | 5.887 | 5.202 | 23.203 | 24.325 | 23.128 |
Segformer | 2.386 | 3.001 | 2.568 | 4.874 | 4.797 | 6.631 | 23.462 | 24.062 | 34.606 |
Deeplabv3 | 2.928 | 3.479 | 3.011 | 6.245 | 5.254 | 7.821 | 23.503 | 26.579 | 37.606 |
FCN | 7.689 | 8.345 | 7.741 | 17.968 | 16.989 | 15.533 | 26.135 | 24.750 | 26.282 |
DaNet | 2.753 | 2.447 | 3.101 | 5.318 | 5.546 | 5.719 | 61.569 | 65.453 | 85.557 |
PointRend | 2.988 | 2.547 | 3.026 | 6.885 | 6.047 | 7.549 | 28.913 | 30.183 | 43.410 |
Method | PMFormer | BiseNet | UNet | PSPNet | Segformer | Deeplabv3 | FCN | DaNet | PointRend |
---|---|---|---|---|---|---|---|---|---|
TPs | 7,826,339 | 13,475,590 | 29,065,860 | 48,964,996 | 3,729,794 | 49,849,166 | 68,102,532 | 9,646,033 | 28,717,711 |
TMAs | 15.98 | 18.47 | 51.49 | 178.46 | 6.57 | 199.19 | 269.67 | 18.77 | 56.11 |
Dataset | Model | mIoU | F1 | Pr | Acc | ||
---|---|---|---|---|---|---|---|
NDWI | Mask2Former | PMFormer | |||||
SLGF | √ | × | × | 0.5968 | 0.7063 | 0.6207 | 0.7186 |
× | √ | × | 0.9661 | 0.9790 | 0.9808 | 0.9832 | |
√ | √ | √ | 0.9853 | 0.9938 | 0.9989 | 0.9973 | |
SWED | √ | × | × | 0.5635 | 0.6638 | 0.7801 | 0.7441 |
× | √ | × | 0.8506 | 0.9058 | 0.9148 | 0.9086 | |
√ | √ | √ | 0.9212 | 0.9433 | 0.9567 | 0.9487 | |
SLL8 | √ | × | × | 0.4692 | 0.6624 | 0.4924 | 0.8393 |
× | √ | × | 0.9789 | 0.9712 | 0.9761 | 0.9705 | |
√ | √ | √ | 0.9921 | 0.9972 | 0.9966 | 0.9975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Wu, W.; Nie, S.; Wang, J.; Liu, S. Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention. Remote Sens. 2024, 16, 3432. https://doi.org/10.3390/rs16183432
Ji Y, Wu W, Nie S, Wang J, Liu S. Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention. Remote Sensing. 2024; 16(18):3432. https://doi.org/10.3390/rs16183432
Chicago/Turabian StyleJi, Yingjie, Weiguo Wu, Shiqiang Nie, Jinyu Wang, and Song Liu. 2024. "Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention" Remote Sensing 16, no. 18: 3432. https://doi.org/10.3390/rs16183432
APA StyleJi, Y., Wu, W., Nie, S., Wang, J., & Liu, S. (2024). Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention. Remote Sensing, 16(18), 3432. https://doi.org/10.3390/rs16183432