CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++
Abstract
:1. Introduction
- (1)
- In the encoder section of Unet++, substitute the feature extractor of the original Unet++ with ResNet34 to enhance the network’s complexity by increasing its depth.
- (2)
- Embedding the Spatial and Channel ‘Squeeze and Excitation’ (SCSE) module into the sampling stage of the network to suppress background features and amplify water body features.
- (3)
- Adding the vegetation red edge based water index (RWI) into the input data to maximize the utilization of water body spectral information of Sentinel-2 images without increasing the data processing time.
2. Materials and Methods
2.1. Materials
2.1.1. Study Area and Data
2.1.2. Data Generation Pipeline
2.2. Methods
2.2.1. Main Network Structure
- (1)
- Using ResNet34 to replace the feature extractor of the original Unet++, increasing the depth of the network to improve the complexity of the network, and using ImageNet pre-training parameters to initialize the model parameters to speed up the training process.
- (2)
- Adding the Spatial and Channel ‘Squeeze and Excitation’ (SCSE) module is added to the up-sampling stage of the network to suppress the background features and enhance the water body features.
- (3)
- Fusing RWI water index to the training data to fully utilize the spectral information in Sentinel-2 images without increasing the data processing time.
2.2.2. Main Network Loss Function
2.2.3. Implementation Details and Evaluation Indexes
3. Results
3.1. Training Process
3.2. Comparison Experiment of Adding Modules
3.3. Quantitative Comparison Experiment with Classic Network
3.4. Qualitative Comparison Experiment of Adding Modules
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 Surface Reflectance Products for River Remote Sensing Retrievals of Chlorophyll-a and Turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.; Chen, C.; Hao, H.; Li, W.; Jiao, L. A Multi-Modality Fusion and Gated Multi-Filter U-Net for Water Area Segmentation in Remote Sensing. Remote Sens. 2024, 16, 419. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y. Water Body Extraction in Remote Sensing Imagery Using Domain Adaptation-Based Network Embedding Selective Self-Attention and Multi-Scale Feature Fusion. Remote Sens. 2022, 14, 3538. [Google Scholar] [CrossRef]
- Li, J.; Ma, R.; Cao, Z.; Xue, K.; Xiong, J.; Hu, M.; Feng, X. Satellite Detection of Surface Water Extent: A Review of Methodology. Water 2022, 14, 1148. [Google Scholar] [CrossRef]
- Quang, D.N.; Linh, N.K.; Tam, H.S.; Viet, N.T. Remote sensing applications for reservoir water level monitoring, sustainable water surface management, and environmental risks in Quang Nam province, Vietnam. J. Water Clim. Chang. 2021, 12, 3045–3063. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K. Controls on Stable Isotopic Characteristics of Water Vapor over Thailand. Hydrol. Process. 2021, 35, e14202. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Li, Y.; Phoumilay. The construction and verification of a water index in the complex environment based on GF-2 images. Remote Sens. Nat. Resour. 2022, 34, 50–58. [Google Scholar]
- Mondejar, J.P.; Tongco, A.F. Near infrared band of Landsat 8 as water index: A case study around Cordova and Lapu-Lapu City, Cebu, Philippines. Sustain. Environ. Res. 2019, 29, 16. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Cao, M.; Mao, K.; Shen, X.; Xu, T.; Yan, Y.; Yuan, Z. Monitoring the spatial and temporal variations in the water surface and floating algal bloom areas in Dongting Lake using a long-term MODIS image time series. Remote Sens. 2020, 12, 3622. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-histogram. IEEE Trans. Syst. ManCybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.; Zhang, B.; Shen, Q.; Ye, H.; Wang, S.; Lu, Z. A simple automated dynamic threshold extraction method for the classification of large water bodies from landsat-8 OLI water index images. Int. J. Remote Sens. 2018, 39, 3429–3451. [Google Scholar] [CrossRef]
- Dan, L.I.; Wu, B.; Chen, B.W.; Xue, Y.; Zhang, Y. Review of water body information extraction based on satellite remote sensing. J. Tsinghua Univ. (Sci. Technol.) 2020, 60, 147–161. [Google Scholar]
- Zhang, Y.; Liu, X.; Zhang, Y.; Ling, X.; Huang, X. Automatic and Unsupervised Water Body Extraction Based on Spectral-Spatial Features Using GF-1 Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2018, 16, 927–931. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, R.; Yang, X.; Wang, J.; Latif, A. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water 2018, 10, 585. [Google Scholar] [CrossRef]
- Miao, Z.; Fu, K.; Sun, H.; Sun, X.; Yan, M. Automatic water-body segmentation from high-resolution satellite images via deep networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 602–606. [Google Scholar] [CrossRef]
- Guo, H.; He, G.; Jiang, W.; Yin, R.; Yan, L.; Leng, W. A Multi-Scale Water Extraction Convolutional Neural Network (MWEN) Method for GaoFen-1 Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2020, 9, 189. [Google Scholar] [CrossRef]
- Luo, X.; Tong, X.; Hu, Z. An applicable and automatic method for earth surface water mapping based on multispectral images. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102472. [Google Scholar] [CrossRef]
- Li, A.; Fan, M.; Qin, G.; Xu, Y.; Wang, H. Comparative Analysis of Machine Learning Algorithms in Automatic Identification and Extraction of Water Boundaries. Appl. Sci. 2021, 11, 10062. [Google Scholar] [CrossRef]
- Friedl, M.; Brodley, C. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Peng, J.; Lee, K.; Ingersoll, G. An Introduction to Logistic Regression Analysis and Reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Breiman, L. Random forests, machine learning 45. J. Clin. Microbiol. 2001, 2, 199–228. [Google Scholar]
- Feng, W.; Sui, H.; Huang, W.; Xu, C.; An, K. Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model. IEEE Geosci. Remote Sens. 2019, 16, 618–622. [Google Scholar] [CrossRef]
- Christianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Samat, A.; Li, E.Z.; Wang, W.; Liu, S.C.; Lin, C.; Abuduwaili, J. Meta-XGBoost for Hyperspectral Image Classification Using Extended MSER-Guided Morphological Profiles. Remote Sens. 2020, 12, 1973. [Google Scholar] [CrossRef]
- Du, S.H.; Du, S.H.; Liu, B.; Zhang, X.Y. Mapping large-scale and fine-grained urban functional zones from VHR images using a multi-scale semantic segmentation network and object based approach. Remote Sens. Environ. 2021, 261, 112480. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, X.; Zhang, Y.; Zhao, G. MSLWENet: A Novel Deep Learning Network for Lake Water Body Extraction of Google Remote Sensing Images. Remote Sens. 2020, 12, 4140. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2016, arXiv:1606.00915. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Chen, Q.; Zheng, L.; Li, X.; Xu, C.; WU, Y.; Xie, D.; Liu, L. Water Body Extraction from High-Resolution Satellite Remote Sensing Images Based on Deep Learning. Geogr. Geo-Inf. Sci. 2019, 35, 43–49. [Google Scholar]
- Tang, Y.; Zhang, J.; Jiang, Z.; Lin, Y.; Hou, P. RAU-Net++: River Channel Extraction Methods for Remote Sensing Images of Cold and Arid Regions. Appl. Sci. 2024, 14, 251. [Google Scholar] [CrossRef]
- Fan, Z.; Hou, J.; Zang, Q.; Chen, Y.; Yan, F. River Segmentation of Remote Sensing Images Based on Composite Attention Network. Complexity 2022, 2022, 7750281. [Google Scholar] [CrossRef]
- Zhong, H.-F.; Sun, H.-M.; Han, D.-N.; Li, Z.-H.; Jia, R.-S. Lake Water Body Extraction of Optical Remote Sensing Images Based on Semantic Segmentation. Appl. Intell. 2022, 52, 17974–17989. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Yu, H.; Lu, X.; Li, G. A water extraction method for remote sensing with lightweight network model. Sci. Surv. Mapp. 2022, 47, 64–72. [Google Scholar]
- Wu, J.; Sun, D.; Wang, J.; Qiu, H.; Wang, R.; Liang, F. Surface River Extraction from Remote Sensing Images based on Improved U-Net. In Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hangzhou, China, 4–6 May 2022; pp. 1004–1009. [Google Scholar]
- Liu, Z.; Chen, X.; Zhou, S.; Yu, H.; Guo, J.; Liu, Y. DUPnet: Water Body Segmentation with Dense Block and Multi-Scale Spatial Pyramid Pooling for Remote Sensing Images. Remote Sens. 2022, 14, 5567. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Li, X. River Extraction Method of Remote Sensing Image Based on Edge Feature Fusion. IEEE Access 2023, 11, 73340–73351. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, H.; Ma, G.; Zhao, H.; Xie, D.; Geng, S.; Tian, W.; Sian, K.T. MU-Net: Embedding MixFormer into Unet to Extract Water Bodies from Remote Sensing Images. Remote Sens. 2023, 15, 3559. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Zhou, Y.; He, X.; He, M. Flood Monitoring Using Sentinel-1 SAR for Agricultural Disaster Assessment in Poyang Lake Region. Remote Sens. 2023, 15, 5247. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 User Handbook; ESA: Paris, France, 2015. [Google Scholar]
- Classification Algorithms and Methods. Available online: https://seos-project.eu/classification/classification-c01-p05.html (accessed on 8 August 2024).
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv 2018, arXiv:1807.10165. [Google Scholar]
- Yin, H.; Zhang, J.; Zhang, C.; Qian, Y.; Han, Y.; Ge, Y.; Shuai, L.; Liu, M. Water Extraction from Remote Sensing Images: Method Based on Convolutional Neural Networks. Trop. Geogr. 2022, 42, 854–866. [Google Scholar]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, Robust, and Automated Mapping of Tidal Flats in China Using Time Series Sentinel-2 Images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Roy, A.G.; Navab, N.; Wachinger, C. Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks. arXiv 2018, arXiv:1803.02579. [Google Scholar]
- Wu, Q.; Wang, M.; Shen, Q.; Yao, Y.; Li, J.; Zhang, F.; Zhou, Y. Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image. Natl. Remote Sens. Bull. 2022, 26, 781794. [Google Scholar] [CrossRef]
- Wei, H.; Xu, X.; Ou, N.; Zhang, X.; Dai, Y. DEANet: Dual Encoder with Attention Network for Semantic Segmentation of Remote Sensing Imagery. Remote Sens. 2021, 13, 3900. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. Deep Learn Med. Image Anal. Multimodal. Learn Clin. Decis. Support 2017, 2017, 240–248. [Google Scholar]
- Peng, Y.; Zhang, Z.M.; He, G.J.; Wei, M.Y. An improved grabcut method based on a visual attention model for rare-earth ore mining area recognition with high-resolution remote sensing images. Remote Sens. 2019, 11, 987. [Google Scholar] [CrossRef]
Image MGRS | Imaging Time (M-D-Y) | Central Longitude (°E) | Central Latitude (°N) |
---|---|---|---|
50RMS | 10 July 2022 | 116.5 | 28.4 |
50RMT | 10 July 2022 | 116.5 | 29.4 |
50RLS | 13 July 2022 | 115.5 | 28.4 |
50RLT | 13 July 2022 | 115.5 | 29.4 |
Evaluation Index | Calculation Formula |
---|---|
precision | |
recall | |
IoU |
Method | F1 | IoU |
---|---|---|
Baseline | 93.20 | 87.27 |
Baseline + RWI | 95.69 | 91.74 |
Baseline + RWI + ResNet34 | 96.07 | 92.44 |
Baseline + RWI + ResNet34 + SCSE | 96.19 | 92.67 |
CNNs | Precision/(%) | Recall/(%) | IoU/(%) | |
---|---|---|---|---|
RWI | 90.88 | 95.77 | 93.26 | 87.37 |
Unet | 95.33 | 96.11 | 95.72 | 91.79 |
FCN | 92.86 | 88.47 | 90.61 | 82.84 |
SegNet | 91.54 | 95.93 | 95.08 | 90.62 |
DeepLab v3+ | 93.36 | 95.06 | 94.21 | 89.05 |
CRAUnet++ | 95.99 | 96.41 | 96.19 | 92.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Xu, X.; Huang, S.; Sun, Y.; Ma, J.; Zhu, H.; Hu, M. CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++. Remote Sens. 2024, 16, 3391. https://doi.org/10.3390/rs16183391
Li N, Xu X, Huang S, Sun Y, Ma J, Zhu H, Hu M. CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++. Remote Sensing. 2024; 16(18):3391. https://doi.org/10.3390/rs16183391
Chicago/Turabian StyleLi, Nan, Xiaohua Xu, Shifeng Huang, Yayong Sun, Jianwei Ma, He Zhu, and Mengcheng Hu. 2024. "CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++" Remote Sensing 16, no. 18: 3391. https://doi.org/10.3390/rs16183391
APA StyleLi, N., Xu, X., Huang, S., Sun, Y., Ma, J., Zhu, H., & Hu, M. (2024). CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++. Remote Sensing, 16(18), 3391. https://doi.org/10.3390/rs16183391