Assessment of NavVis VLX and BLK2GO SLAM Scanner Accuracy for Outdoor and Indoor Surveying Tasks
Abstract
:1. Introduction
- Assessment of the efficiency of a SLAM scanner in the application of detailed surveys in an outdoor setting to address the envisaged challenges.
- A comparative study is conducted on residential areas, comparing different workflow methods and different reference datasets.
- Assessment of the capabilities of the SLAM scanner for indoor and outdoor data collection.
- Assessment of whether SLAM can achieve accuracies to a standard fit for conducting surveys.
2. Assessment Design and Used SLAM Scanners
2.1. NavVis VLX SLAM Scanner
2.2. BLK2GO SLAM Scanner
3. Outdoor Assessment
3.1. NavVis SLAM Scanner and TS Datasets
3.1.1. Data Assessments
3.1.2. Results and Discussion
3.2. NavVix SLAM Data and Static Scanner Dataset
Discussion
3.3. BLK2GO SLAM Scanner Accuracy Assessment
3.3.1. Edge Detection Board Assessment
3.3.2. Discussion
3.3.3. TS Datasets as a Reference
4. Indoor Assessment
Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GeoSLAM. What Is SLAM (Simultaneous Localisation and Mapping)? 2023, GeoSLAM, Sydney. Available online: https://geoslam.com/what-is-slam/ (accessed on 28 February 2024).
- Gharineiat, Z.; Tarsha Kurdi, F.; Campbell, G. Review of automatic processing of topography and surface feature identification LiDAR data using machine learning techniques. Remote Sens. 2022, 14, 4685. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Reed, P.; Gharineiat, Z.; Awrangjeb, M. Efficiency of terrestrial laser scanning in survey works: Assessment, modelling, and monitoring. Int. J. Environ. Sci. Nat. Resour. 2023, 32, 556334. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Lewandowicz, E.; Shan, J.; Gharineiat, Z. Three-dimensional modeling and visualization of single tree LiDAR point cloud using matrixial form. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3010–3022. [Google Scholar] [CrossRef]
- Shan, J.; Toth, C.K. Topographic Laser Ranging and Scanning Principles and Processing, 2nd ed.; Taylor & Francis Group, LLC: Abingdon, UK, 2018; 630p, ISBN 978-1-4987-7227-3. (In Hardcover) [Google Scholar]
- Shin, J.; Park, H.; Kim, T. Characteristics of Laser Backscattering Intensity to Detect Frozen and Wet Surfaces on Roads. J. Sens. 2019, 2019, 8973248. [Google Scholar] [CrossRef]
- Martinenko, A.; Brajović, L.M.; Malović, M. Influence of material surface roughness on backscattering in laser scanning. In Proceedings of the International Conference on Contemporary Theory and Practice in Construction (Stepgrad), Banja Luka, Bosnia and Herzegovina, 16–17 June 2022; Volume XV, pp. 487–497. [Google Scholar] [CrossRef]
- Malatzky, P. Z+F LASER CONTROL OFFICE Training Exercise Manual, Training Manual on Processing Z+F Imager 5016 data, Position Partners, Brisbane. 2020. Available online: https://www.aptella.com/video-tag/scanning/ (accessed on 28 February 2024).
- Campi, M.; Falcone, M.; Sabbatini, S. Towards Continuous Monitoring of Architecture. Terrestrial Laser Scanning and Mobile Mapping System for the Diagnostic Phases of the Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 46, 121–127. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Klein, G.; Murray, D. Parallel tracking and mapping for small ar workspaces. In Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234. [Google Scholar]
- Taheri, H.; Xia, Z.C. SLAM definition and evolution. Eng. Appl. Artif. Intell. 2021, 97, 104032. [Google Scholar] [CrossRef]
- Keitaanniemi, A.; Rönnholm, P.; Kukko, A.; Vaaja, M.T. Drift analysis and sectional post-processing of indoor simultaneous localization and mapping (SLAM)-based laser scanning data. Autom. Constr. 2023, 147, 104700. [Google Scholar] [CrossRef]
- NavVis. NavVis VLX 2nd Generation, NavVis, Munich, Germany. 2023. Available online: https://www.navvis.com/vlx (accessed on 28 February 2024).
- Zlot, R.; Bosse, M.; Greenop, K.; Jarzab, Z.; Juckes, E.; Roberts, J. Efficiently capturing large, 800 complex cultural heritage sites with a handheld mobile 3D laser mapping system. J. Cult. Herit. 2014, 15, 670–678. [Google Scholar] [CrossRef]
- Tanduo, B.; Martino, A.; Balletti, C.; Guerra, F. New Tools for Urban Analysis: A SLAM-Based Research in Venice. Remote Sens. 2022, 14, 4325. [Google Scholar] [CrossRef]
- Sammartano, G.; Spanò, A. Point clouds by SLAM-based mobile mapping systems: Accuracy and geometric content validation in multisensor survey and stand-alone acquisition. Appl. Geomat. 2018, 10, 317–339. [Google Scholar] [CrossRef]
- Di Filippo, A.; Sánchez-Aparicio, L.J.; Barba, S.; Martín-Jiménez, J.A.; Mora, R.; González Aguilera, D. Use of a Wearable Mobile Laser System in Seamless Indoor 3D Mapping of a Complex Historical Site. Remote Sens. 2018, 10, 1897. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509. [Google Scholar] [CrossRef]
- Kaartinen, H.; Hyyppä, J.; Kukko, A.; Jaakkola, A.; Hyyppä, H. Benchmarking the Performance of Mobile Laser Scanning Systems Using a Permanent Test Field. Sensors 2012, 12, 12814–12835. [Google Scholar] [CrossRef]
- Vaaja, M.; Hyyppä, J.; Kukko, A.; Kaartinen, H.; Hyyppä, H.; Alho, P. Mapping Topography Changes and Elevation Accuracies Using a Mobile Laser Scanner. Remote Sens. 2011, 3, 587–600. [Google Scholar] [CrossRef]
- Barba, S.; Ferreyra, C.; Cotella, V.A.; di Filippo, A.; Amalfitano, S.A. SLAM Integrated Approach for Digital Heritage Documentation. In Culture and Computing. Interactive Cultural Heritage and Arts. HCII 2021; Rauterberg, M., Ed.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12794. [Google Scholar] [CrossRef]
- Xuexi, Z.; Guokun, L.; Genping, F.; Dongliang, X.; Shiliu, L. SLAM Algorithm Analysis of Mobile Robot Based on Lidar. In Proceedings of the Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 4739–4745. [Google Scholar] [CrossRef]
- Lauterbach, H.A.; Borrmann, D.; Heß, R.; Eck, D.; Schilling, K.; Nüchter, A. Evaluation of a Backpack-Mounted 3D Mobile Scanning System. Remote Sens. 2015, 7, 13753–13781. [Google Scholar] [CrossRef]
- Chiappini, S.; Fini, A.; Malinverni, E.S.; Frontoni, E.; Racioppi, G.; Pierdicca, R. Cost effective spherical photogrammetry: A Novel Framework for the Smart Management of Complex Urban Environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 441–448. [Google Scholar] [CrossRef]
- Fassi, F.; Perfetti, L. Backpack mobile mapping solution for dtm extraction of large inaccessible spaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 473–480. [Google Scholar] [CrossRef]
- Vatandaşlar, C.; Zeybek, M. Extraction of forest inventory parameters using handheld mobile laser scanning: A case study from Trabzon, Turkey. Measurement 2021, 177, 109328. [Google Scholar] [CrossRef]
- Di Stefano, F.; Chiappini, S.; Gorreja, A.; Balestra, M.; Pierdicca, R. Mobile 3D scan LiDAR: A literature review. Geomat. Nat. Hazards Risk 2021, 12, 2387–2429. [Google Scholar] [CrossRef]
- Yiğit, A.Y.; Gamze Hamal, S.N.; Ulvi, A.; Yakar, M. Comparative analysis of mobile laser scanning and terrestrial laser scanning for the indoor mapping. Build. Res. Inf. 2023, 52, 402–417. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Amakhchan, W.; Gharineiat, Z.; Boulaassal, H.; El Kharki, O. Contribution of geometric feature analysis for deep learning classification algorithms of urban LiDAR data. Sensors 2023, 23, 7360. [Google Scholar] [CrossRef] [PubMed]
- Tarsha Kurdi, F.; Landes, T.; Grussenmeyer, P. Hough-transform and extended RANSAC algorithms for automatic detection of 3d building roof planes from Lidar data. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; pp. 407–412. [Google Scholar]
- Tarsha Kurdi, F.; Landes, T.; Grussenmeyer, P. Extended RANSAC algorithm for automatic detection of building roof planes from Lidar data. Photogramm. J. Finland. 2008, 21, 97–109. [Google Scholar]
- Li, Z.; Shan, J. RANSAC-based multi primitive building reconstruction from 3D point clouds. ISPRS J. Photogramm. Remote Sens. 2021, 185, 247–260. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, T. Research on BIM Reconstruction Method Using Semantic Segmentation Point Cloud Data Based on PointNet. IOP Conf. Ser. Earth Environ. Sci. 2021, 719, 022042. [Google Scholar] [CrossRef]
- Dey, E.; Awrangjeb, M.; Tarsha Kurdi, F.; Stantic, B. Machine learning-based segmentation of aerial LiDAR point cloud data on building roof. Eur. J. Remote Sens. 2023, 56, 2210745. [Google Scholar] [CrossRef]
- Gebert, F. Development of an Autonomous Mobile Mapping Robot by Combining the NavVis VLX with the Boston Dynamics SPOT; Hochschule für Angewandte Wissenschaften: München, Germany, 2022; Available online: https://opus4.kobv.de/opus4-hm/frontdoor/index/index/docId/450 (accessed on 28 February 2024).
- Leica Geosystems. Leica BLK2GO, Leica Geosystems. Available online: https://shop.leica-geosystems.com/au/leica-blk/blk2go/overview?srsltid=AfmBOorBbJKRphhO93d16sn9xg910BjBxgPCZvxJWFOvJpwmuns3nNqZ (accessed on 28 February 2024).
- Dlesk, A.; Vach, K.; Šedina, J.; Pavelka, K. Comparison of leica blk360 and leica blk2go on chosen test objects. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 46, 77–82. [Google Scholar] [CrossRef]
- Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar] [CrossRef]
- Leica Geosystems AG. Leica Viva TS16 Data Sheet. 2015. Available online: https://leica-geosystems.com/products/total-stations/robotic-total-stations/leica-ts16 (accessed on 21 May 2024).
- Rakotosaona, M.-J.; La Barbera, V.; Guerrero, P.; Mitra, N.J.; Ovsjanikov, M. PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds. Comput. Graph. Forum 2020, 39, 185–203. [Google Scholar] [CrossRef]
- Han, X.-F.; Jin, J.S.; Wang, M.-J.; Jiang, W.; Gao, L.; Xiao, L. A review of algorithms for filtering the 3D point cloud. Signal Process. Image Commun. 2017, 57, 103–112. [Google Scholar] [CrossRef]
- Rognant, L.; Chassery, J.M.; Goze, S.; Planes, J.G. The Delaunay constrained triangulation: The Delaunay stable algorithms. In Proceedings of the IEEE International Conference on Information Visualization, (Cat. No. PR00210). London, UK, 4–16 July 1999; pp. 147–152. [Google Scholar]
- Antova, G. Application of Areal Change Detection Methods Using Point Clouds Data. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012082. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Li, H.; Huang, F. A Comparison Method for 3D Laser Point Clouds in Displacement Change Detection for Arch Dams. ISPRS Int. J. Geo-Inf. 2021, 10, 184. [Google Scholar] [CrossRef]
- Ahmad Fuad, N.; Yusoff, A.R.; Ismail, Z.; Majid, Z. Comparing the performance of point cloud registration methods for landslide monitoring using mobile laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 11–21. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Marton, Z.; Soos, A.; Beetz, M. Towards 3D object maps for autonomous household robots. In Proceedings of the International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007. [Google Scholar] [CrossRef]
- Harrap, R.; Lato, M. An Overview of LiDAR: Collection to Application. NGI Publication 2. 2010, pp. 1–9. Available online: https://www.academia.edu/1360215/An_Overview_of_LIDAR_collection_to_applications (accessed on 28 February 2024).
- Becker, R.; Blut, C.; Emunds, C.; Frisch, J.; Heidermann, D.; Kinnen, T.; Lenz, A.; Möller, M.; Pauen, N.; Rettig, T. BIM-assisted, automated processes for commissioning in building services engineering. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), Bogota, Colombia, 12–15 July 2022; pp. 558–565. [Google Scholar] [CrossRef]
- Chen, P.; Luo, Z.; Shi, W. Hysteretic mapping and corridor semantic modeling using mobile LiDAR systems. ISPRS J. Photogramm. Remote Sens. 2022, 186, 267–284. [Google Scholar] [CrossRef]
Outdoor | Indoor | |||||
---|---|---|---|---|---|---|
NavVis | TS | BLK2GO | TS | NavVix | Z+F | |
Number of points | 10,340,402 | 365 | 54,668,797 | 573 | 10,827,312 | 117,776,549 |
Number of mesh triangles | 11,280,274 | 691 | 13,637,817 | 1118 | - | - |
Acquisition time (minutes) | 50 | 180 | 42 | 190 | 2.45 | 70 |
Post-processing time (minutes) | 7 | 12 | 32 |
Feature | TS Z (m) | MLS Z (m) | Δ Z (mm) |
---|---|---|---|
Water meter | 37.449 | 37.453 | −4 |
Storm water pit | 37.327 | 37.312 | 15 |
FFL front deck | 40.674 | 40.678 | −4 |
FFL back deck | 40.66 | 40.674 | −14 |
Roof heights | 44.673 | 44.698 | −25 |
RMSE (mm) | |||
Confidence level | 100% | 15 | |
95% | 14 | ||
68% | 10 |
TS | MLS | |||||
---|---|---|---|---|---|---|
Feature | X (m) | Y (m) | X (m) | Y (m) | Δ X (mm) | Δ Y (mm) |
Front deck corner | 501,452.516 | 6,970,295.245 | 501,452.520 | 6,970,295.22 | −4 | 25 |
Building corner | 501,452.131 | 6,970,292.727 | 501,452.100 | 6,970,292.789 | 31 | −62 |
Building corner | 501,456.724 | 6,970,291.919 | 501,456.710 | 6,970,291.920 | 14 | −1 |
Building corner | 501,456.977 | 6,970,293.345 | 501,456.960 | 6,970,293.290 | 17 | 55 |
Building corner | 501,466.178 | 6,970,291.649 | 501,466.19 | 6,970,291.55 | −12 | 99 |
Building corner | 501,464.789 | 6,970,283.685 | 501,464.85 | 6,970,283.68 | −61 | 5 |
Building corner | 501,451.046 | 6,970,286.189 | 501,451.01 | 6,970,286.23 | 36 | −41 |
Back deck corner | 501,450.14 | 6,970,281.271 | 501,450.13 | 6,970,281.27 | 10 | 1 |
Back deck corner | 501,456.101 | 6,970,280.18 | 501,456.09 | 6,970,280.19 | 11 | −10 |
Electrical pole | 501,443.919 | 6,970,279.769 | 501,443.856 | 6,970,279.676 | 63 | 93 |
Electrical pole | 501,447.283 | 6,970,301.2 | 501,447.289 | 6,970,301.224 | −6 | −24 |
Street sign | 501,446.139 | 6,970,293.845 | 501,446.12 | 6,970,293.684 | 19 | 161 |
Street sign | 501,453.381 | 6,970,306.063 | 501,453.405 | 6,970,306.111 | −24 | −48 |
Gully pit corner | 501,458.671 | 6,970,307.661 | 501,458.688 | 6,970,307.709 | −17 | −48 |
Gully pit corner | 501,459.563 | 6,970,307.532 | 501,459.573 | 6,970,307.53 | −10 | 2 |
RMSE_X (mm) | RMSE_Y (mm) | |||||
Confidence level | 100% | 28 | 63 | |||
95% | 27 | 60 | ||||
68% | 19 | 43 |
Scan Distances to Target (m) | Confirmed Depth (mm) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
---|---|---|---|---|---|---|---|---|---|
2 | Scanned Depth (mm) | 7 | 14 | 14 | 17 | 20 | 23 | 32 | 31 |
Delta (mm) | 4 | 8 | 5 | 5 | 5 | 5 | 11 | 7 | |
5 | Scanned Depth (mm) | 5 | 8 | 11 | 16 | 20 | 25 | 28 | 29 |
Delta (mm) | 2 | 2 | 2 | 4 | 5 | 7 | 7 | 5 | |
7 | Scanned Depth (mm) | 8 | 12 | 13 | 20 | 20 | 20 | 27 | 29 |
Delta (mm) | 5 | 6 | 4 | 8 | 5 | 2 | 6 | 5 | |
10 | Scanned Depth (mm) | - | - | 20 | 17 | 15 | 23 | 25 | 30 |
Delta (mm) | - | - | 14 | 8 | 3 | 8 | 7 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharineiat, Z.; Tarsha Kurdi, F.; Henny, K.; Gray, H.; Jamieson, A.; Reeves, N. Assessment of NavVis VLX and BLK2GO SLAM Scanner Accuracy for Outdoor and Indoor Surveying Tasks. Remote Sens. 2024, 16, 3256. https://doi.org/10.3390/rs16173256
Gharineiat Z, Tarsha Kurdi F, Henny K, Gray H, Jamieson A, Reeves N. Assessment of NavVis VLX and BLK2GO SLAM Scanner Accuracy for Outdoor and Indoor Surveying Tasks. Remote Sensing. 2024; 16(17):3256. https://doi.org/10.3390/rs16173256
Chicago/Turabian StyleGharineiat, Zahra, Fayez Tarsha Kurdi, Krish Henny, Hamish Gray, Aaron Jamieson, and Nicholas Reeves. 2024. "Assessment of NavVis VLX and BLK2GO SLAM Scanner Accuracy for Outdoor and Indoor Surveying Tasks" Remote Sensing 16, no. 17: 3256. https://doi.org/10.3390/rs16173256
APA StyleGharineiat, Z., Tarsha Kurdi, F., Henny, K., Gray, H., Jamieson, A., & Reeves, N. (2024). Assessment of NavVis VLX and BLK2GO SLAM Scanner Accuracy for Outdoor and Indoor Surveying Tasks. Remote Sensing, 16(17), 3256. https://doi.org/10.3390/rs16173256