Seasonal Dynamics of the Land-Surface Characteristics in Arid Regions Retrieved by Optical and Microwave Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Field Observation
2.2.2. Remote Sensing
- Optical Data
- (1)
- Linear Spectral Unmixing
- (2)
- Shortwave Infrared Transformed Reflectance (STR)
- Radar Data
- (1)
- Microwave backscatter coefficient
3. Results
3.1. In Situ Investigation Results of the Seasonal Variations of Plant Height, Volume, and Soil Moisture in Two Different Study Regions
3.2. Spectral Unmixing the Spatial Fraction Coverage of the Vegetation Endmembers
3.3. Seasonal Variations of the Land Surface of the Two Different Land Cover Study Regions
3.4. Seasonal Dynamics of the NDVI and Backscatter Coefficients (σ0VH and σ0VV)
3.5. Seasonal Dynamics of STR and the Backscatter Coefficients (σ0VH and σ0VV)
4. Discussion
4.1. Gobi Desert Region
4.2. Steppe Region
4.3. Summary
5. Conclusions
- (1)
- Due to the high reflectivity of the background soil in the Gobi Desert region, there is a bias between the NDVI from optical images and the actual vegetation. As a result, vegetation does not show up accurately in the NDVI, leading to less seasonal variation. However, σ0VH and σ0VV fluctuate slightly during summer and fall. In contrast, the steppe region shows significant seasonal variation in both the NDVI and STR, with the seasonal variation of σ0VV being more pronounced than that of σ0VH.
- (2)
- The correlations between the backscatter coefficient and the NDVI and STR vary with the seasons. The inverse correlation between the NDVI and backscatter coefficient (σ0VV) in spring and winter is because, in the Gobi Desert region, perennial shrubs are not photosynthetic, which is reflected as surface roughness in the backscatter coefficient (σ0VV) not in the NDVI value. Additionally, due to the effect of dry vegetation, the area with non-green vegetation could have high backscatter compared with the area with low and flat grassland. On the other hand, in steppe regions, photosynthetic annual herbaceous plants show constant NDVI values but are not counted as roughness.
- (3)
- This study demonstrates that a combination of optical and microwave satellite data can effectively retrieve the seasonal dynamics of the land surface in arid regions. Through the temporal and spatial analysis of data from the four seasons in the steppe and Gobi Desert regions, the impacts of soil moisture and growing vegetation on backscatter, as well as the changing trends of vegetation and soil moisture in different seasons, can be observed. Future work will focus on further improving the algorithm, enhancing the precision and accuracy of data analysis, as well as providing more reliable data support for drought monitoring and response.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gholizadeh, H.; Zoghipour, M.H.; Torshizi, M.; Nazari, M.R.; Moradkhani, N. Gone with the wind: Impact of soil-dust storms on farm income. Ecol. Econ. 2021, 188, 107133. [Google Scholar] [CrossRef]
- Abbasi, S.; Rezaei, M.; Ahmadi, F.; Turner, A. Atmospheric transport of microplastics during a dust storm. Chemosphere 2022, 292, 133456. [Google Scholar] [CrossRef]
- Meng, Q.; Yan, C.; Li, R.; Zhang, T.; Zheng, M.; Liu, Y.; Zhang, M.; Wang, G.; Du, Y.; Shang, C. Variations of PM2.5-bound elements and their associated effects during long-distance transport of dust storms: Insights from multi-sites observations. Sci. Total Environ. 2023, 889, 164062. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Yang, J.; Zhao, S.; Pan, B.; Liu, C.; Zhang, D.; Wu, T. Climatological analysis of dust storms in the area surrounding the Tengger Desert during 1960–2007. Clim. Dyn. 2015, 45, 903–913. [Google Scholar] [CrossRef]
- Tsedendamba, P.; Dulam, J.; Baba, K.; Hagiwara, K.; Noda, J.; Kawai, K.; Sumiya, G.; McCarthy, C.; Kai, K.; Hoshino, B. Northeast Asian dust transport: A case study of a dust storm event from 28 March to 2 April 2012. Atmosphere 2019, 10, 69. [Google Scholar] [CrossRef]
- Hagiwara, K.; Matsumoto, T.; Tsedendamba, P.; Baba, K.; Hoshino, B. Bacterial characteristics of dust particle saltation in Gobi dust sites, Mongolia. Atmosphere 2021, 12, 1456. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Zhang, X.X.; Lu, H.; Zhang, X.Y.; Xu, Z. Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management. Environ. Res. Lett. 2021, 16, 124056. [Google Scholar] [CrossRef]
- Liu, H.; Tian, Y.; Ding, D. Contributions of different land cover types in Otindag Sandy Land and Bashang area of Hebei Province to the material source of sand stormy weather in Beijing. Chin. Sci. Bull. 2003, 48, 1853–1856. [Google Scholar] [CrossRef]
- Singer, A.; Zobeck, T.; Poberezsky, L.; Argaman, E. The PM10 and PM2.5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. J. Arid Environ. 2003, 54, 705–728. [Google Scholar] [CrossRef]
- Wu, J.; Kurosaki, Y.; Shinoda, M.; Kai, K. Regional characteristics of recent dust occurrence and its controlling factors in East Asia. Sola 2016, 12, 187–191. [Google Scholar] [CrossRef]
- Han, L.; Tsunekawa, A.; Tsubo, M. Effect of frozen ground on dust outbreaks in spring on the eastern Mongolian Plateau. Geomorphology 2011, 129, 412–416. [Google Scholar] [CrossRef]
- Kurosaki, Y. Seasonal and regional characteristics of dust event in the Taklimakan Desert. J. Arid Land Stud. 2002, 11, 245–252. [Google Scholar]
- Kurosaki, Y.; Mikami, M. Threshold wind speed for dust emission in east Asia and its seasonal variations. J. Geophys. Res. Atmos. 2007, 112, D17202. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Wu, C.; Lin, Z.; Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 2020, 20, 10401–10425. [Google Scholar] [CrossRef]
- Demura, Y.; Hoshino, B.; Sofue, Y.; Kai, K.; Purevsuren, T.; Baba, K.; Noda, J. Estimates of ground surface characteristics for outbreaks of the Asian Dust Storms in the sources region. ProScience 2016, 3, 21–30. [Google Scholar]
- Uno, I.; Amano, H.; Emori, S.; Kinoshita, K.; Matsui, I.; Sugimoto, N. Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation. J. Geophys. Res. Atmos. 2001, 106, 18331–18344. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Sofue, Y.; Hoshino, B.; Demura, Y.; Kai, K.; Baba, K.; Nduati, E.; Kondoh, A.; Sternberg, T. Satellite monitoring of vegetation response to precipitation and dust storm outbreaks in Gobi Desert regions. Land 2018, 7, 19. [Google Scholar] [CrossRef]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
- Zhang, N.; Hong, Y.; Qin, Q.M.; Liu, L. VSDI: A visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. Int. J. Remote Sens. 2013, 34, 4585–4609. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Barrett, B.W.; Dwyer, E.; Whelan, P. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sens. 2009, 1, 210–242. [Google Scholar] [CrossRef]
- Beriaux, E.; Lucau-Danila, C.; Auquiere, E.; Defourny, P. Multiyear independent validation of the water cloud model for retrieving maize leaf area index from SAR time series. Int. J. Remote Sens. 2013, 34, 4156–4181. [Google Scholar] [CrossRef]
- Gaber, A.; Soliman, F.; Koch, M.; El-Baz, F. Using full-polarimetric SAR data to characterize the surface sediments in desert areas: A case study in El-Gallaba Plain, Egypt. Remote Sens. Environ. 2015, 162, 11–28. [Google Scholar] [CrossRef]
- Ullmann, T.; Stauch, G. Surface roughness estimation in the orog nuur basin (Southern mongolia) using sentinel-1 SAR time series and ground-based photogrammetry. Remote Sens. 2020, 12, 3200. [Google Scholar] [CrossRef]
- Buyantogtokh, B.; Kurosaki, Y.; Tsunekawa, A.; Tsubo, M.; Ishizuka, M.; Gantsetseg, B.; Batjargal, G. Estimating the sand saltation thresholds from Sentinel-1 SAR data in the Gobi Desert, Mongolia. J. Arid Environ. 2022, 202, 104772. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dubois, P.C.; Van Zyl, J. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Cao, S.; Navacchi, C.; Freeman, V.; Reuß, F.; Geudtner, D.; Rommen, B.; Vega, F.C.; Snoeij, P.; Attema, E. The normalised Sentinel-1 Global Backscatter Model, mapping Earth’s land surface with C-band microwaves. Sci. Data 2021, 8, 1–18. [Google Scholar] [CrossRef]
- Zhang, B.; Wdowinski, S.; Gann, D.; Hong, S.H.; Sah, J. Spatiotemporal variations of wetland backscatter: The role of water depth and vegetation characteristics in Sentinel-1 dual-polarization SAR observations. Remote Sens. Environ. 2022, 270, 112864. [Google Scholar] [CrossRef]
- Imhoff, M.L. Radar Backscatter and Biomass Saturation: Ramifications for Global Biomass Inventory. IEEE Trans. Geosci. Remote Sens. 1995, 33, 51–518. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, W.; Marinoni, A.; Gao, L.; Zhang, B. An Improved Spatial and Temporal Reflectance Unmixing Model to Synthesize Time Series of Landsat-Like Images. Remote Sens. 2018, 10, 1388. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Setiyono, T.; Quicho, E.; Gatti, L.; Campos-Taberner, M.; Busetto, L.; Collivignarelli, F.; García-Haro, F.J.; Boschetti, M.; Khan, N.I.; Holecz, F. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA CropGrowth Model. Remote Sens. 2018, 10, 293. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Lu, S.; Xiang, D.; Su, Y. Fast Superpixel-Based Non-Window CFAR Ship Detector for SAR Imagery. Remote Sens. 2022, 14, 2092. [Google Scholar] [CrossRef]
- Valdivieso-Ros, C.; Alonso-Sarria, F.; Gomariz-Castillo, F. Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine Learning Algorithms. Remote Sens. 2023, 15, 312. [Google Scholar] [CrossRef]
- Cuypers, S.; Nascetti, A.; Vergauwen, M. Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2023, 15, 2501. [Google Scholar] [CrossRef]
- Zhang, G.; Roslan, S.N.A.; Wang, C.; Quan, L. Research on land cover classifcation of multi-source remote sensing data based on improved U-net network. Sci. Rep. 2023, 13, 16275. [Google Scholar]
- Xiang, Y.; Tian, X.; Xu, Y.; Guan, X.; Chen, Z. EGMT-CD: Edge-Guided Multimodal Transformers Change Detection from Satellite and Aerial Images. Remote Sens. 2024, 16, 86. [Google Scholar] [CrossRef]
- Batima, P.; Natsagdorj, L.; Gombluudev, P.; Erdenetsetseg, B. Observed Climate Change in Mongolia. AIACC Work. Pap. 2005, 12, 1–26. [Google Scholar]
- Hao, J.; Lin, Q.; Wu, T.; Chen, J.; Li, W.; Wu, X.; Hu, G.; La, Y. Spatial–Temporal and Driving Factors of Land Use/Cover Change in Mongolia from 1990 to 2021. Remote Sens. 2023, 15, 1813. [Google Scholar] [CrossRef]
- Vandandorj, S.; Gantsetseg, B.; Boldgiv, B. Spatial and temporal variability in vegetation cover of Mongolia and its implications. J. Arid Land 2015, 7, 450–461. [Google Scholar] [CrossRef]
- Garini, Y.; Young, I.T.; McNamara, G. Spectral imaging: Principles and applications. Cytom. J. Int. Soc. Anal. 2006, 69, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, B.; Tian, Y.; Shima, K.; Riga, S.; Enkhtuvshin, Z.; McCarthy, C.; Purevtseren, M. Remotely Sensed Method for Detection of Spatial Distribution Pattern of Dryland Plants in Water Limited Ecosystem. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2799–2802. [Google Scholar]
- Kubelka, P.; Munk, F. An article on optics of paint layers. Fuer Tekn. Physik. 1931, 12, 593–609. [Google Scholar]
- MCD12Q1.061 MODIS Land Cover Type Yearly Global 500m: NASA LP DAAC at the USGS EROS Center. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD12Q1 (accessed on 1 April 2024).
- Chen, F.; Crow, W.T.; Bindlish, R.; Colliander, A.; Burgin, M.S.; Asanuma, J.; Aida, K. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sens. Environ. 2018, 214, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bindlish, R.; Barros, A.P. Multifrequency soil moisture inversion from SAR measurements with the use of IEM. Remote Sens. Environ. 2000, 71, 67–88. [Google Scholar] [CrossRef]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
- Hoshino, B.; Yonemori, M.; Manayeva, K.; Karamalla, A.; Yoda, K.; Suliman, M.; Elgamri, M.; Nawata, H.; Mori, Y.; Yabuki, S. Remote sensing methods for the evaluation of the mesquite tree (Prosopis juliflora) environmental adaptation to semi-arid Africa. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1910–1913. [Google Scholar]
- Natsagdorj, L.; Jugder, D.; Chung, Y. Analysis of dust storms observed in Mongolia during 1937–1999. Atmos. Environ. 2003, 37, 1401–1411. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Glenn, E.; Huete, A.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [PubMed]
- Johansen, b.; Tømmervik, H. The relationship between phytomass, NDVI and vegetation communities on Svalbard. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 20–30. [Google Scholar] [CrossRef]
- Shao, Y.; Fraedrich, K.; Ishizuka, M. Modelling soil moisture in hyper-arid conditions. Bound.-Layer Meteorol. 2021, 179, 169–186. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, X.; Lei, J. Dust emission and potential diffusion process in Mongolia. Land Degrad. Dev. 2023, 34, 2750–2762. [Google Scholar] [CrossRef]
- French, A.N.; Schmugge, T.J.; Ritchie, J.C.; Hsu, A.; Jacob, F.; Ogawa, K. Detecting land cover change at the Jornada Experimental Range, New Mexico with ASTER emissivities. Remote Sens. Environ. 2008, 112, 1730–1748. [Google Scholar] [CrossRef]
- Deroin, J.P.; Company, A.; Simonin, A. An empirical model for interpreting the relationship between backscatter and arid land surface roughness as seen with the SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 86–92. [Google Scholar] [CrossRef]
- Tansey, K.; Millington, A. Investigating the potential for soil moisture and surface roughness monitoring in drylands using ERS SAR data. Int. J. Remote Sens. 2001, 22, 2129–2149. [Google Scholar] [CrossRef]
- Collingwood, A.; Treitz, P.; Charbonneau, F. Surface roughness estimation from RADARSAT-2 data in a High Arctic environment. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 70–80. [Google Scholar] [CrossRef]
- Hardenberg, J.; Meron, E.; Shachak, M.; Zarmi, Y. Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 2001, 87, 198101. [Google Scholar] [CrossRef]
- Wagner, W.; Lindorfer, R.; Melzer, T.; Hahn, S.; Bauer-Marschallinger, B.; Morrison, K.; Calvet, J.C.; Hobbs, S.; Quast, R.; Greimeister-Pfeil, I. Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering. Remote Sens. Environ. 2022, 276, 113025. [Google Scholar] [CrossRef]
- Roos, S.de.; Busschaert, L.; Lievens, H.; Bechtold, M.; De Lannoy, G.J. Optimisation of AquaCrop backscatter simulations using Sentinel-1 observations. Remote Sens. Environ. 2023, 294, 113621. [Google Scholar] [CrossRef]
- Adodo, F.I.; Remy, F.; Picard, G. Seasonal variations of the backscatter coefficient measured by radar altimeters over the Antarctic Ice Sheet. Cryosphere 2018, 12, 1767–1778. [Google Scholar] [CrossRef]
- Graldi, G.; Zardi, D.; Vitti, A. Retrieving Soil Moisture at the Field Scale from Sentinel-1 Data over a Semi-Arid Mediterranean Agricultural Area. Remote Sens. 2023, 15, 2997. [Google Scholar] [CrossRef]
- Ullmann, T.; Jagdhuber, T.; Hoffmeister, D.; May, S.M.; Baumhauer, R.; Bubenzer, O. Exploring Sentinel-1 backscatter time series over the Atacama Desert (Chile) for seasonal dynamics of surface soil moisture. Remote Sens. Environ. 2023, 285, 113413. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Shinoda, M.; Mikami, M. What caused a recent increase in dust outbreaks over East Asia? Geophys. Res. Lett. 2011, 38, L11702. [Google Scholar] [CrossRef]
- Wu, J.; Kurosaki, Y.; Sekiyama, T.T.; Maki, T. Effects of Dry Vegetation Coverage Estimated from the MODIS Soil Tillage Index on Dust Occurrence: Verification by Surface Synoptic Observations. J. Meteorol. Soc. Jpn. Ser. II 2023, 101, 67–77. [Google Scholar] [CrossRef]
- Enquist, B.J.; Niklas, K.J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 2002, 295, 1517–1520. [Google Scholar] [CrossRef]
- West, G.B.; Enquist, B.J.; Brown, J.H. A general quantitative theory of forest structure and dynamics. Proc. Natl. Acad. Sci. USA 2009, 106, 7040–7045. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Bourgeau-Chavez, L.L.; Rober, A.R.; Wyatt, K.H.; Waddington, J.M.; Turetsky, M.R. Effects of soil moisture and water depth on ERS SAR backscatter measurements from an Alaskan wetland complex. Remote Sens. Environ. 2009, 113, 1868–1873. [Google Scholar] [CrossRef]
- Xu, C.; Qu, J.; Hao, X.; Wu, D. Monitoring Surface Soil Moisture Content over the Vegetated Area by Integrating Optical and SAR Satellite Observations in the Permafrost Region of Tibetan Plateau. Remote Sens. 2020, 12, 183. [Google Scholar] [CrossRef]
- Yang, F.; Chongyi, E. Correlation analysis between sand-dust events and meteorological factors in Shapotou, Northern China. Environ. Earth Sci. 2010, 59, 1359–1365. [Google Scholar]
- Lee, E.H.; Sohn, B.J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change. Atmos. Environ. 2011, 45, 4611–4616. [Google Scholar] [CrossRef]
- Mao, R.; Ho, C.H.; Feng, S.; Gong, D.Y.; Shao, Y. The influence of vegetation variation on Northeast Asian dust activity. Asia Pac. J. Atmos. Sci. 2013, 49, 87–94. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Musial, J.; Malinska, A.; Budzynska, M.; Gurdak, R.; Kiryla, W.; Bartold, M.; Grzybowski, P. Soil moisture in the Biebrza Wetlands retrieved from Sentinel-1 imagery. Remote Sens. 2018, 10, 1979. [Google Scholar] [CrossRef]
- Ulaby, F.T.; van Deventer, T.E.; East, J.R.; Haddock, T.F. Millimeter-wave bistatic scattering from ground andvegetation targets. IEEE Trans. Geosci. Remote Sens. 1988, 26, 229–243. [Google Scholar] [CrossRef]
- Townsend, P. Mapping seasonal flooding in forested wetlands using multi-temporal radarsat SAR. Photogramm. Eng. Remote Sens. 2001, 67, 857–864. [Google Scholar]
- Tian, Y.; Hai, R.H.; Yong, H.; Myagmartseren, P.; Hoshino, B. Impact of settlement-type grazing on rangeland vegetation in the Inner Mongolia autonomous region: A field verification of case study through a grazing experiment. Agric. Biol. Res. 2023, 39, 537–546. [Google Scholar]
- Pope, K.O.; Rey-Benayas, J.M.; Paris, J.F. Radar remote sensing of forest and wetland ecosystems in the Central American tropics. Remote Sens. Environ. 1994, 48, 205–219. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
Backscatter Coefficient (σ0VH and σ0VV) | NDVI | STR | |||
---|---|---|---|---|---|
RVH | RVV | RVH | RVV | ||
Gobi Desert sites | Spring (May) | 0.05 * | −0.56 *** | −0.12 *** | −0.58 *** |
Summer (August) | 0.29 *** | 0.06 ** | 0.45 *** | 0.48 *** | |
Fall (November) | 0.44 *** | 0.14 *** | 0.19 *** | 0.08 *** | |
Winter (January) | 0.13 *** | −0.23 *** | 0.26 *** | 0.07 *** | |
Steppe sites | Spring (May) | 0.23 *** | −0.43 *** | −0.17 *** | −0.38 *** |
Summer (August) | 0.71 *** | 0.24 *** | 0.40 *** | 0.39 *** | |
Fall (November) | 0.16 *** | −0.34 *** | 0.38 *** | 0.09 *** | |
Winter (January) | 0.02 | −0.13 *** | −0.21 *** | −0.06 ** |
NDVI | STR | σ0VH | σ0VV | ||
---|---|---|---|---|---|
R | R | R | R | ||
Precipitation (mm) | Gobi Desert sites | 0.2 | 0.08 | 0.51 * | 0.14 |
Steppe sites | 0.72 ** | 0.08 | 0.61 ** | 0.51 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Ackermann, K.; McCarthy, C.; Sternberg, T.; Purevtseren, M.; Limuge, C.; Hagiwara, K.; Ogawa, K.; Hobara, S.; Hoshino, B. Seasonal Dynamics of the Land-Surface Characteristics in Arid Regions Retrieved by Optical and Microwave Satellite Data. Remote Sens. 2024, 16, 3143. https://doi.org/10.3390/rs16173143
Tian Y, Ackermann K, McCarthy C, Sternberg T, Purevtseren M, Limuge C, Hagiwara K, Ogawa K, Hobara S, Hoshino B. Seasonal Dynamics of the Land-Surface Characteristics in Arid Regions Retrieved by Optical and Microwave Satellite Data. Remote Sensing. 2024; 16(17):3143. https://doi.org/10.3390/rs16173143
Chicago/Turabian StyleTian, Ying, Kurt Ackermann, Christopher McCarthy, Troy Sternberg, Myagmartseren Purevtseren, Che Limuge, Katsuro Hagiwara, Kenta Ogawa, Satoru Hobara, and Buho Hoshino. 2024. "Seasonal Dynamics of the Land-Surface Characteristics in Arid Regions Retrieved by Optical and Microwave Satellite Data" Remote Sensing 16, no. 17: 3143. https://doi.org/10.3390/rs16173143
APA StyleTian, Y., Ackermann, K., McCarthy, C., Sternberg, T., Purevtseren, M., Limuge, C., Hagiwara, K., Ogawa, K., Hobara, S., & Hoshino, B. (2024). Seasonal Dynamics of the Land-Surface Characteristics in Arid Regions Retrieved by Optical and Microwave Satellite Data. Remote Sensing, 16(17), 3143. https://doi.org/10.3390/rs16173143