Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method
2.2.1. Overview
2.2.2. Data Acquisition
2.2.3. Data Preparation
2.2.4. Feature Extraction and Selection
2.2.5. Selection of Machine Learning Classification Algorithms
2.2.6. Classification Accuracy Evaluation
3. Results
3.1. Feature Selection Based on REF-RF
3.2. Mangroves Species Classification and Accuracy Evaluation
3.3. Mapping the Distribution of Mangrove Species
4. Discussion
4.1. Feature Selection
4.2. Advantage of Hyperspectral Data in Mangrove Species Identification
4.3. Model Robustness Evaluation
4.4. Limitations and Implications for Mangrove Species Mapping
5. Conclusions
- Dimensionality reduction: UAV remote sensing data can contain redundant features, impacting classification accuracy. To address this, we employed correlation analysis and utilized an RF algorithm with recursive feature elimination for feature selection. This approach effectively reduced overfitting and identified vegetation indices as the most informative features for inter-species classification.
- Data source and algorithm performance: Hyperspectral data consistently yielded superior classification results compared to multispectral data. Among the evaluated algorithms, the LightGBM algorithm achieved the highest classification accuracy. RF and XGBoost also demonstrated promising performance for hyperspectral mangrove species classification.
- Spatial variability and classification performance: Comparative analysis between study areas revealed higher overall classification accuracy in Yingluo Bay compared to Pearl Bay, despite using the same data source. This difference likely stems from variations in species characteristics between the two locations. This finding underscores the importance of considering spatial variability in species distribution when optimizing classification strategies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Spectral Indices | Formula | References |
---|---|---|
Anthocyanin Reflectance Index1 (ARI1) | [67] | |
Anthocyanin Reflectance Index1 (ARI2) | [68] | |
Carotenoid Reflectance Index1 (CRI2) | [69] | |
Enhanced Vegetation Index (EVI) | [70] | |
Global Environmental Monitoring Index (GEMI) | [71] | |
Green Atmospherically Resistant index (GARI) | [72] | |
Green Leaf Index (GLI) | [73] | |
Leaf Area Index (LAI) | [74] | |
Modified Chlorophyll Absorption Ratio Index (MCARI) | [75] | |
Modified Red Edge Normalized Difference Vegetation Index (MRENDVI) | [76] | |
Modified Red Edge Simple Ration (MRESR) | [77] | |
Normalized Difference Mud Index (NDMI) | [78] | |
Photochemical Reflectance Index (PRI) | [79,80] | |
Plant Senescence Reflenctance Index (PSRI) | [81] | |
Red Edge Position Index (REPI) | The wavelength of the maximum derivative of reflectance in the vegetation red edge region of the spectrum in microns from 690 to 740 nm. | [82] |
Red Green Ratio Index (RGRI) | [83] | |
Simple Ratio Index (SRI) | [84] | |
Structure insensitive Pigment Index (SIPI) | [85] | |
Sum Green Index (SGI) | [86] | |
Transformed Chlorophyll Absorption Reflectance Index (TCARI) | [87] | |
Transformed Difference Vegetation Index (TDVI) | [88] | |
Triangular Greenness Index (TGI) | [89] | |
Visible Atmospherically Resistant Index (VARI) | [90] | |
Vogelmann Red Edge Index1 (VREI) | [91] | |
Vogelmann Red Edge Index2 (VREI) | [91] | |
Water Band Index (WBI) | [92] |
Appendix B
References
- Lassalle, G.; Ferreira, M.P.; La Rosa, L.E.C.; de Souza Filho, C.R. Deep learning-based individual tree crown delineation in mangrove forests using very-high-resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2022, 189, 220–235. [Google Scholar] [CrossRef]
- Alongi, D.M. Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forests. Forests 2022, 13, 149. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.; Wang, Z.; Mao, D.; Wang, Y. Identifying mangroves through knowledge extracted from trained random forest models: An interpretable mangrove mapping approach (IMMA). ISPRS J. Photogramm. Remote Sens. 2023, 201, 209–225. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Song, K.; Zhao, C.; Wang, C.; Xiao, X.; Wang, Y. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef]
- Cao, J.; Liu, K.; Zhuo, L.; Liu, L.; Zhu, Y.; Peng, L. Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102414. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, K.; Cao, J.; Peng, L.; Wen, X. Annual Change Analysis of Mangrove Forests in China during 1986–2021 Based on Google Earth Engine. Forests 2022, 13, 1489. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Mao, D.; Ren, C.; Zhao, C.; Liu, X. Tracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102918. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.; Zhang, R.; Wang, Z.; Ren, C.; Mao, D.; Wang, Y. Mangrove species mapping in coastal China using synthesized Sentinel-2 high-separability images. Remote Sens. Environ. 2024, 307, 114151. [Google Scholar] [CrossRef]
- Su, J.; Friess, D.A.; Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 2021, 12, 5050. [Google Scholar] [CrossRef]
- Bai, J.; Meng, Y.; Gou, R.; Dai, Z.; Zhu, X.; Lin, G. The linkages between stomatal physiological traits and rapid expansion of exotic mangrove species (Laguncularia racemosa) in new territories. Front. Mar. Sci. 2023, 10, 1136443. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, B.J.; Jiang, H.; Yao, L. Mapping the number of mangrove trees in the Guangdong-Hong Kong-Macao Greater Bay Area. Mar. Pollut. Bull. 2023, 196, 115658. [Google Scholar] [CrossRef] [PubMed]
- Lassalle, G.; Ferreira, M.P.; Cué La Rosa, L.E.; Del’Papa Moreira Scafutto, R.; de Souza Filho, C.R. Advances in multi- and hyperspectral remote sensing of mangrove species: A synthesis and study case on airborne and multisource spaceborne imagery. ISPRS J. Photogramm. Remote Sens. 2023, 195, 298–312. [Google Scholar] [CrossRef]
- Fu, B.; He, X.; Liang, Y.; Deng, T.; Li, H.; He, H.; Jia, M.; Fan, D.; Wang, F. Examination of the performance of ASEL and MPViT algorithms for classifying mangrove species of multiple natural reserves of Beibu Gulf, south China. Ecol. Indic. 2023, 154, 110870. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Flores-de-Santiago, F.; Kovacs, J.M.; Flores-Verdugo, F. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environ. Monit. Assess. 2017, 190, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wang, R.; Sun, F.; Wu, X. Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species. Remote Sens. 2018, 10, 1468. [Google Scholar] [CrossRef]
- Bullock, E.L.; Fagherazzi, S.; Nardin, W.; Vo-Luong, P.; Nguyen, P.; Woodcock, C.E. Temporal patterns in species zonation in a mangrove forest in the Mekong Delta, Vietnam, using a time series of Landsat imagery. Cont. Shelf Res. 2017, 147, 144–154. [Google Scholar] [CrossRef]
- Zulfa, A.W.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Rhyma, P.P.; Fitrianto, A. Spectral signature analysis to determine mangrove species delineation structured by anthropogenic effects. Ecol. Indic. 2021, 130, 108148. [Google Scholar] [CrossRef]
- Peng, L.; Liu, K.; Cao, J.; Zhu, Y.; Li, F.; Liu, L. Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods. Int. J. Remote Sens. 2019, 41, 813–838. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, M.; Jian, Z.; Ai, B.; Zhao, J.; Chen, Q. Species Classification and Carbon Stock Assessment of Mangroves in Qi’ao Island with Worldview-3 Imagery. Forests 2023, 14, 2356. [Google Scholar] [CrossRef]
- Wan, L.; Lin, Y.; Zhang, H.; Wang, F.; Liu, M.; Lin, H. GF-5 Hyperspectral Data for Species Mapping of Mangrove in Mai Po, Hong Kong. Remote Sens. 2020, 12, 656. [Google Scholar] [CrossRef]
- Prakash Hati, J.; Samanta, S.; Rani Chaube, N.; Misra, A.; Giri, S.; Pramanick, N.; Gupta, K.; Datta Majumdar, S.; Chanda, A.; Mukhopadhyay, A.; et al. Mangrove classification using airborne hyperspectral AVIRIS-NG and comparing with other spaceborne hyperspectral and multispectral data. Egypt. J. Remote Sens. Space Sci. 2021, 24, 273–281. [Google Scholar] [CrossRef]
- Osei Darko, P.; Kalacska, M.; Arroyo-Mora, J.P.; Fagan, M.E. Spectral Complexity of Hyperspectral Images: A New Approach for Mangrove Classification. Remote Sens. 2021, 13, 2604. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S.; Chen, B. High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sens. 2021, 13, 1529. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Y.; Wang, Z.; Song, K.; Ren, C. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 226–231. [Google Scholar] [CrossRef]
- Li, Z.; Zan, Q.; Yang, Q.; Zhu, D.; Chen, Y.; Yu, S. Remote Estimation of Mangrove Aboveground Carbon Stock at the Species Level Using a Low-Cost Unmanned Aerial Vehicle System. Remote Sens. 2019, 11, 1018. [Google Scholar] [CrossRef]
- Zimudzi, E.; Sanders, I.; Rollings, N.; Omlin, C.W. Remote sensing of mangroves using unmanned aerial vehicles: Current state and future directions. J. Spat. Sci. 2019, 66, 195–212. [Google Scholar] [CrossRef]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef]
- Medellin, A.; Bhamri, A.; Langari, R.; Gopalswamy, S. Real-Time Semantic Segmentation using Hyperspectral Images for Mapping Unstructured and Unknown Environments. arXiv 2023, arXiv:2303.15623. [Google Scholar]
- Pham, T.; Yokoya, N.; Bui, D.; Yoshino, K.; Friess, D. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Zhao, C.; Wang, Z.; Jia, M. High-Resolution Mapping of Mangrove Species Height in Fujian Zhangjiangkou National Mangrove Nature Reserve Combined GF-2, GF-3, and UAV-LiDAR. Remote Sens. 2023, 15, 5645. [Google Scholar] [CrossRef]
- Deng, L.; Chen, B.; Yan, M.; Fu, B.; Yang, Z.; Zhang, B.; Zhang, L. Estimation of Species-Scale Canopy Chlorophyll Content in Mangroves from UAV and GF-6 Data. Forests 2023, 14, 1417. [Google Scholar] [CrossRef]
- Fu, B.; He, X.; Yao, H.; Liang, Y.; Deng, T.; He, H.; Fan, D.; Lan, G.; He, W. Comparison of RFE-DL and stacking ensemble learning algorithms for classifying mangrove species on UAV multispectral images. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102890. [Google Scholar] [CrossRef]
- Wen, X.; Jia, M.; Li, X.; Wang, Z.; Zhong, C.; Feng, E. Identification of mangrove canopy species based on visible unmanned aerial vehicle images. J. For. Environ. 2020, 40, 486–496. [Google Scholar] [CrossRef]
- Zaiming, Z.; Benqing, C.; Ran, X.; Wei, F. Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve. Haiyang Xuebao 2021, 43, 137–145. [Google Scholar] [CrossRef]
- Lina, Y.; Guifeng, Z.; Zheng, W.; Mianqing, W.; Jinke, L.; Liujing, W. Mangrove forest species classification based on the UAV hyperspectral images. Bull. Surv. Mapp. 2022, 26, 26–31. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Hua, Z.; Xia, C.; Zhao, L. A Band Selection Method with Masked Convolutional Autoencoder for Hyperspectral Image. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6010005. [Google Scholar] [CrossRef]
- Chen, H.; Miao, F.; Chen, Y.; Xiong, Y.; Chen, T. A Hyperspectral Image Classification Method Using Multifeature Vectors and Optimized KELM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2781–2795. [Google Scholar] [CrossRef]
- Behera, M.D.; Barnwal, S.; Paramanik, S.; Das, P.; Bhattyacharya, B.K.; Jagadish, B.; Roy, P.S.; Ghosh, S.M.; Behera, S.K. Species-Level Classification and Mapping of a Mangrove Forest Using Random Forest—Utilisation of AVIRIS-NG and Sentinel Data. Remote Sens. 2021, 13, 2027. [Google Scholar] [CrossRef]
- Heenkenda, M.; Joyce, K.; Maier, S.; Bartolo, R. Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs. Remote Sens. 2014, 6, 6064–6088. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S. Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach. Remote Sens. 2011, 3, 2222–2242. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wu, X. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sens. 2018, 10, 294. [Google Scholar] [CrossRef]
- Fu, B.; Zuo, P.; Liu, M.; Lan, G.; He, H.; Lao, Z.; Zhang, Y.; Fan, D.; Gao, E. Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images. Ecol. Indic. 2022, 140, 108989. [Google Scholar] [CrossRef]
- Lin, J.; Liu, X.; Lan, W.; Huang, Z. Conservation effectiveness of Hepu Dugong dugon National Nature Reserve of Guangxi Zhuang Autonomous Region. Wetl. Sci. 2020, 18, 461–467. [Google Scholar] [CrossRef]
- Shichu, L. Studies on the mangrove communities in Yingluo Bay of Guangxi [China]. Acta Phytoecol. Sin. 1996, 20, 310–320. [Google Scholar]
- Ning, Q.Y.; Lai, T.H.; Cao, Q.X.; Mo, Z.N.; Li, Y.H.; He, B.Y. Structures and dynamics of mangrove populations in Zhenzhu Bay, Guangxi. J. Appl. Oceanogr. 2022, 41, 42–52. [Google Scholar] [CrossRef]
- Catalão, J.; Navarro, A.; Calvão, J. Mapping Cork Oak Mortality Using Multitemporal High-Resolution Satellite Imagery. Remote Sens. 2022, 14, 2750. [Google Scholar] [CrossRef]
- Ogungbuyi, M.G.; Mohammed, C.; Ara, I.; Fischer, A.M.; Harrison, M.T. Advancing Skyborne Technologies and High-Resolution Satellites for Pasture Monitoring and Improved Management: A Review. Remote Sens. 2023, 15, 4866. [Google Scholar] [CrossRef]
- Silva, A.G.P.; Galvão, L.S.; Ferreira Júnior, L.G.; Teles, N.M.; Mesquita, V.V.; Haddad, I. Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation. Remote Sens. 2024, 16, 2256. [Google Scholar] [CrossRef]
- Souza, A.A.d.; Galvão, L.S.; Korting, T.S.; Almeida, C.A. On a Data-Driven Approach for Detecting Disturbance in the Brazilian Savannas Using Time Series of Vegetation Indices. Remote Sens. 2021, 13, 4959. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy. Int. J. Remote Sens. 2009, 30, 3205–3221. [Google Scholar] [CrossRef]
- Crabbe, R.A.; Lamb, D.W.; Edwards, C. Discriminating between C3, C4, and Mixed C3/C4 Pasture Grasses of a Grazed Landscape Using Multi-Temporal Sentinel-1a Data. Remote Sens. 2019, 11, 253. [Google Scholar] [CrossRef]
- Luo, G.; Chen, G.; Tian, L.; Qin, K.; Qian, S.-E. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Can. J. Remote Sens. 2016, 42, 106–116. [Google Scholar] [CrossRef]
- Saini, R. Integrating vegetation indices and spectral features for vegetation mapping from multispectral satellite imagery using AdaBoost and random forest machine learning classifiers. Geomat. Environ. Eng. 2023, 17, 57–74. [Google Scholar] [CrossRef]
- Pham, T.D.; Le, N.N.; Ha, N.T.; Nguyen, L.V.; Xia, J.; Yokoya, N.; To, T.T.; Trinh, H.X.; Kieu, L.Q.; Takeuchi, W. Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 data in can Gio biosphere reserve, Vietnam. Remote Sens. 2020, 12, 777. [Google Scholar] [CrossRef]
- Huber, F.; Yushchenko, A.; Stratmann, B.; Steinhage, V. Extreme Gradient Boosting for yield estimation compared with Deep Learning approaches. Comput. Electron. Agric. 2022, 202, 107346. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban tree classification based on object-oriented approach and random forest algorithm using unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- Candido, C.; Blanco, A.; Medina, J.; Gubatanga, E.; Santos, A.; Ana, R.S.; Reyes, R. Improving the consistency of multi-temporal land cover mapping of Laguna lake watershed using light gradient boosting machine (LightGBM) approach, change detection analysis, and Markov chain. Remote Sens. Appl. Soc. Environ. 2021, 23, 100565. [Google Scholar] [CrossRef]
- Sang, M.; Xiao, H.; Jin, Z.; He, J.; Wang, N.; Wang, W. Improved Mapping of Regional Forest Heights by Combining Denoise and LightGBM Method. Remote Sens. 2023, 15, 5436. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Predictive Performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Natras, R.; Soja, B.; Schmidt, M. Ensemble machine learning of random forest, AdaBoost and XGBoost for vertical total electron content forecasting. Remote Sens. 2022, 14, 3547. [Google Scholar] [CrossRef]
- Shen, Z.; Miao, J.; Wang, J.; Zhao, D.; Tang, A.; Zhen, J. Evaluating Feature Selection Methods and Machine Learning Algorithms for Mapping Mangrove Forests Using Optical and Synthetic Aperture Radar Data. Remote Sens. 2023, 15, 5621. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Jiang, Y.F. Classification of Mangrove Species Using High-Resolution Multi-Sourse Remote Sensing Images. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2021. [Google Scholar]
- Xu, Y.; Zhen, J.; Jiang, X.; Wang, J. Mangrove species classification with UAV-based remote sensing data and XGBoost. Natl. Remote Sens. Bull 2021, 25, 737–752. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Sripada, R.P. Determining In-Season Nitrogen Requirements for Corn Using Aerial Color-Infrared Photography; North Carolina State University: Raleigh, NC, USA, 2005. [Google Scholar]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.; Jensen, N.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.; Kim, M.; De Colstoun, E.B.; McMurtrey Iii, J. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S.M. Quick atmospheric correction code: Algorithm description and recent upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Gamon, J.; Serrano, L.; Surfus, J. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef]
- Gamon, J.; Surfus, J. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Lobell, D.B.; Asner, G.P. Hyperion studies of crop stress in Mexico. In Proceedings of the 12th JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 4–8 March 1996. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Bannari, A.; Asalhi, H.; Teillet, P.M. Transformed difference vegetation index (TDVI) for vegetation cover mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 3053–3055. [Google Scholar]
- Hunt Jr, E.R.; Daughtry, C.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Gitelson, A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. Int. J. Remote Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Vogelmann, J.; Rock, B.; Moss, D. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
Parameters | Visible Image | Multispectral Image | Hyperspectral Image |
---|---|---|---|
UAV model | DJI P4 RTK | DJI P4M RTK | DJI M300 RTK |
Sensor | RGB camera | Multispectral camera | ULTRIS X20 PLUS |
Acquisition time | 7 November 2022/24 April 2023 | 20 June 2023/24 April 2023 | 9 November 2022/25 July 2023 |
Flight altitude (m) | 50 | 80/100 | 120/150 |
FOV/Maximum filed angle (°) | 84 | 62.7 | 35 |
Band range (nm) | 400~700 | 450~840 | 350~1000 |
Spectral resolution (nm) | — | — | 4 |
Spatial resolution (m) | 0.02 | 0.03/0.05 | 0.03/0.06 |
Number of bands | 3 | 5 | 164 |
Species and Cover Type | File Survey Photo | UAV Image | Interpretation Signs |
---|---|---|---|
RS 1 | Dark green in color, with a regular texture resembling dense points, occurring in continuous patches. | ||
BG 2 | Light green in color, irregular in texture, with blurred boundaries, clustered in patches, and dispersed distribution. | ||
AM 3 | Composed of light and tender green colors, with a rough texture, predominantly distributed around river channels. | ||
AC 4 | Yellow-green in color, featuring a relatively smooth texture with frequent small gaps, primarily distributed around river channels. | ||
KC 5 | Green in color, appearing clustered with a uniform hue. | ||
EA 6 | Bright green in color, characterized by rough texture, mostly growing along the coastline in scattered distribution. | ||
HT 7 | Yellow-green in color, displaying a mixed hue, with visibly rough texture, mostly growing along the coastline in a patchy distribution. | ||
SA 8 | Light green in color, uniform in hue, with smooth texture, clustered in patches, predominantly located near the seaside. | ||
WB 9 | Mainly composed of gray and light green colors, with a smooth and delicate texture. | ||
MF 10 | Predominantly gray-brown, with a smooth texture and uniform tone. | ||
RD 11 | Composed of bright white and light gray colors, displaying a striped distribution. |
Study Sites | Data Sources | Dimension | Feature Types | Optimal Features |
---|---|---|---|---|
Yingluo Bay | Multi | 17 | Vegetation Indices | ARI1, GEMI, LAI, MCARI, NDMI, SRI, SGI, TDVI, TGI |
Texture features 1 | m_5_0_Con, m_7_180_Con, m_7_270_Mea, m_7_270_Con, m_7_45_Con, m_7_45_ASM | |||
Spectral features | Red, RedEdge | |||
Hyper | 25 | Vegetation Indices | CRI2, SRI, TGI, MRENDVI, VARI, MRESR, SIPI, NDMI, RGRI, PSRI, ARI1, ARI2, REPI, PRI, WBI | |
Texture features 2 | h_3_90_Mea | |||
Spectral features 3 | h_band52, h_band89, h_band92, h_band98, h_band147, h_band150, h_band153, h_band155, h_band157 | |||
Pearl Bay | Multi | 12 | Vegetation Indices | ARI1, GARI, MCARI, NDMI, RGRI, TGI |
Texture features 4 | m_5_45_Mea, m_7_0_Con, m_7_180_Con, m_7_225_Con, m_7_270_Con | |||
Spectral features | Blue | |||
Hyper | 16 | Vegetation Indices | ARI1, ARI2, CRI2, GLI, MRESR, NDMI, SRI, SIPI, TCARI, VREI1, VREI2 | |
Texture features 5 | h_5_180_Var | |||
Spectral features 6 | h_band52, h_band91, h_band101, h_band162 |
Models | Multispectral Image | Hyperspectral Image | ||
---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | |
AdaBoost | 63.05 | 0.56 | 82.96 | 0.79 |
XGBoost | 80.37 | 0.77 | 94.26 | 0.93 |
RF | 80.50 | 0.77 | 95.73 | 0.95 |
LightGBM | 80.96 | 0.78 | 97.15 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Meng, Z.; Zu, J.; Cai, W.; Wang, J.; Su, H.; Yang, J. Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning. Remote Sens. 2024, 16, 3093. https://doi.org/10.3390/rs16163093
Yang Y, Meng Z, Zu J, Cai W, Wang J, Su H, Yang J. Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning. Remote Sensing. 2024; 16(16):3093. https://doi.org/10.3390/rs16163093
Chicago/Turabian StyleYang, Yuanzheng, Zhouju Meng, Jiaxing Zu, Wenhua Cai, Jiali Wang, Hongxin Su, and Jian Yang. 2024. "Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning" Remote Sensing 16, no. 16: 3093. https://doi.org/10.3390/rs16163093
APA StyleYang, Y., Meng, Z., Zu, J., Cai, W., Wang, J., Su, H., & Yang, J. (2024). Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning. Remote Sensing, 16(16), 3093. https://doi.org/10.3390/rs16163093