Extraction of River Water Bodies Based on ICESat-2 Photon Classification
Abstract
1. Introduction
2. Data and Study Areas
2.1. Research Data
2.1.1. ICESat-2 ATL03
2.1.2. World Imagery
2.2. Study Area
3. Methods
3.1. Photon Dispersion Method
3.1.1. Butterworth Low-Pass Filtering
3.1.2. Calculation of the Elevation’s STD Using a Sliding Window
3.1.3. RLC Criterion
3.1.4. Threshold Calculation
3.1.5. DBSCAN Correction
3.2. Accuracy Assessment Method
4. Experimental Results and Analysis
4.1. Photon Point Cloud Denoising
4.2. RLCs Based on the Photon Dispersion Method
4.3. Results from the Three Classification Methods
4.4. Accuracy Assessment and Comparison
4.4.1. Qualitative Evaluation
4.4.2. Quantitative Evaluation
5. Discussion
5.1. Photon Dispersion Algorithm Parameter Sensitivity
5.2. Using the First Peak of the PDF Curve as the Threshold
5.3. Relationship between PDF Curves and Land Complexity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schröter, M.; Bonn, A.; Klotz, S.; Seppelt, R.; Baessler, C. Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhang, B.; Li, J.; Shen, Q.; Wu, Y.; Zhang, F.; Wang, S.; Yao, Y.; Guo, L.; Yin, Z. Recent research progress on long time series and large scale optical remote sensing of inland water. Natl. Remote Sens. Bull. 2021, 25, 37–52. [Google Scholar] [CrossRef]
- Ni, J.; Liu, Y. Ecological rehabilitation of damaged river system. J. Hydraul. Eng. 2006, 37, 1029–1037. [Google Scholar]
- Ni, J.; Ma, A. Rever Dynamica Geomorphology; Peking University Press: Beijing, China, 1998; pp. 151–159. [Google Scholar]
- Norris, R.H.; Morris, K. The need for biological assessment of water quality: Australian perspective. Aust. J. Ecol. 1995, 20, 1–6. [Google Scholar] [CrossRef]
- Bonada, N.; Prat, N.; Resh, V.H.; Statzner, B. Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annu. Rev. Entomol. 2006, 51, 495–523. [Google Scholar] [CrossRef] [PubMed]
- Feio, M.J.; Hughes, R.M.; Callisto, M.; Nichols, S.J.; Odume, O.N.; Quintella, B.R.; Kuemmerlen, M.; Aguiar, F.C.; Almeida, S.F.P.; Alonso-EguíaLis, P.; et al. The Biological Assessment and Rehabilitation of the World’s Rivers: An Overview. Water 2021, 13, 371. [Google Scholar] [CrossRef]
- Canaz, S.; Karsli, F.; Guneroglu, A.; Dihkan, M. Automatic boundary extraction of inland water bodies using LiDAR data. Ocean Coast. Manag. 2015, 118, 158–166. [Google Scholar] [CrossRef]
- Shi, Z.; Huang, C. Recent advances in remote sensing of river characteristics. Prog. Geogr. 2020, 39, 670–684. [Google Scholar] [CrossRef]
- Yuan, X.; Chao, Q.; Mengzhen, X.; Xudong, F.; Dan, L.; Baosheng, W.; Guangqian, W. Progress and Prospects in River Cross Section Extraction Based on Multi-Source Remote Sensing. Natl. Remote Sens. Bull. 2024, xx, 1–21. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R. Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology 2019, 325, 92–102. [Google Scholar] [CrossRef]
- Jin, S.; Liu, Y.; Fagherazzi, S.; Mi, H.; Qiao, G.; Xu, W.; Sun, C.; Liu, Y.; Zhao, B.; Fichot, C.G. River body extraction from sentinel-2A/B MSI images based on an adaptive multi-scale region growth method. Remote Sens. Environ. 2021, 255, 112297. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Nashait, A.F.; Jasim, O.; Ismail, M.; Saad, F. Integrating various satellite images for identification of the water bodies through using machine learning: A case study of Salah Adin, Iraq. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012223. [Google Scholar]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Paul, A.; Tripathi, D.; Dutta, D. Application and comparison of advanced supervised classifiers in extraction of water bodies from remote sensing images. Sustain. Water Resour. Manag. 2018, 4, 905–919. [Google Scholar] [CrossRef]
- Skakun, S. A neural network approach to flood mapping using satellite imagery. Comput. Inform. 2010, 29, 1013–1024. [Google Scholar]
- Aung, E.M.M.; Tint, T. Ayeyarwady river regions detection and extraction system from Google Earth imagery. In Proceedings of the 2018 IEEE International Conference on Information Communication and Signal Processing (ICICSP), Singapore, 28–30 September 2018; pp. 74–78. [Google Scholar]
- Qin, X.; Yang, J.; Li, P.; Sun, W. Research on water body extraction from Gaofen-3 imagery based on polarimetric decomposition and machine learning. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6903–6906. [Google Scholar]
- Rao, P.; Jiang, W.; Wang, X.; Chen, K. Flood disaster analysis based on MODIS data—Taking the flood in Dongting Lake area in 2017 as an example. J. Catastrophol. 2019, 34, 203–207. [Google Scholar]
- Schumann, G.J.-P.; Moller, D.K. Microwave remote sensing of flood inundation. Phys. Chem. Earth Parts A/B/C 2015, 83, 84–95. [Google Scholar] [CrossRef]
- Niedermeier, A.; Lehner, S.; van der Sanden, J. Monitoring big river estuaries using SAR images. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, 9–13 July 2001; pp. 1756–1758. [Google Scholar]
- Tan, Q.; Liu, Z.; Fu, Z.; Hu, J. Lake shoreline detection and tracing in SAR images using wavelet transform and ACM method. In Proceedings of the Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Republic of Korea, 29 July 2005; pp. 3703–3706. [Google Scholar]
- Su, L.; Li, Z.; Gao, F.; Yu, M. A review of remote sensing image water extraction. Remote Sens. Land Resour. 2021, 33, 9–19. [Google Scholar]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Feng, S.; Peng, B.; Huang, L.; Fatholahi, S.N.; Tang, L.; Li, J. An overview of shoreline mapping by using airborne LiDAR. Remote Sens. 2023, 15, 253. [Google Scholar] [CrossRef]
- Stockdonf, H.F.; Sallenger Jr, A.H.; List, J.H.; Holman, R.A. Estimation of shoreline position and change using airborne topographic lidar data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Jiang, H. Coastline Extraction and Property Identification Based on LiDAR; University of Information Engineering, Strategic Support Forces: Zhengzhou, China, 2020. [Google Scholar]
- Yu, C.; Wang, J.; Bao, J.; Xu, J.; Chen, H. A binary image optimization method of extracting coastline based on LiDAR data. J. Geomat. Sci. Technol. 2015, 32, 187–191. [Google Scholar]
- Zhao, X.; Wang, X.; Zhao, J.; Zhou, F. Water–land classification using three-dimensional point cloud data of airborne LiDAR bathymetry based on elevation threshold intervals. J. Appl. Remote Sens. 2019, 13, 034511. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, X.; Zhao, J.; Zhou, F. MVCNN: A Deep Learning-Based Ocean–Land Waveform Classification Network for Single-Wavelength LiDAR Bathymetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 656–674. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Zhao, J.; Zhou, F. An improved water-land discriminator using laser waveform amplitudes and point cloud elevations of airborne LIDAR. J. Coast. Res. 2021, 37, 1158–1172. [Google Scholar] [CrossRef]
- Jianhu, Z.; Yongzhong, O.; Aixue, W. Status and development tendency for seafloor terrain measurement technology. Acta Geod. Et Cartogr. Sin. 2017, 46, 1786. [Google Scholar]
- Li, R.; Wang, C.; Su, G.-Z.; Zhang, K.; Tang, L.; Li, C. Development and applications of spaceborne LiDAR. Sci. Technol. Rev. 2007, 25, 58–63. [Google Scholar]
- Armon, M.; Dente, E.; Shmilovitz, Y.; Mushkin, A.; Cohen, T.J.; Morin, E.; Enzel, Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophys. Res. Lett. 2020, 47, e2020GL087367. [Google Scholar] [CrossRef]
- Xie, J.; Li, B.; Jiao, H.; Zhou, Q.; Mei, Y.; Xie, D.; Wu, Y.; Sun, X.; Fu, Y. Water level change monitoring based on a new denoising algorithm using data from Landsat and ICESat-2: A case study of Miyun Reservoir in Beijing. Remote Sens. 2022, 14, 4344. [Google Scholar] [CrossRef]
- Dong, J.; Ni, W.; Zhang, Z.; Sun, G. Evaluation of the effect of ICESat-2 vegetation canopy height and surface elevation data products for forest height extraction. J. Remote Sens. 2021, 25, 1294–1307. [Google Scholar]
- Huang, X.; Cheng, F.; Wang, J.; Duan, P.; Wang, J. Forest Canopy Height Extraction Method Based on ICESat-2/ATLAS Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5700814. [Google Scholar] [CrossRef]
- Liu, W.; Jin, T.; Li, J.; Jiang, W. Adaptive clustering-based method for ICESat-2 sea ice retrieval. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4301814. [Google Scholar] [CrossRef]
- Brunt, K.; Smith, B.; Sutterley, T.; Kurtz, N.; Neumann, T. Comparisons of satellite and airborne altimetry with ground-based data from the interior of the Antarctic ice sheet. Geophys. Res. Lett. 2021, 48, e2020GL090572. [Google Scholar] [CrossRef]
- Liu, C.; Qi, J.; Li, J.; Tang, Q.; Xu, W.; Zhou, X.; Meng, W. Accurate refraction correction—Assisted bathymetric inversion using ICESat-2 and multispectral data. Remote Sens. 2021, 13, 4355. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef]
- Wen, Z.; Tang, X.; Ai, B.; Yang, F.; Li, G.; Mo, F.; Zhang, X.; Yao, J. A new extraction and grading method for underwater topographic photons of photon-counting LiDAR with different observation conditions. Int. J. Digit. Earth 2024, 17, 1–30. [Google Scholar] [CrossRef]
- Ye, J.; Qiang, Y.; Zhang, R.; Liu, X.; Deng, Y.; Zhang, J. High-precision digital surface model extraction from satellite stereo images fused with ICESat-2 data. Remote Sens. 2021, 14, 142. [Google Scholar] [CrossRef]
- Klotz, B.W.; Neuenschwander, A.; Magruder, L.A. High-resolution ocean wave and wind characteristics determined by the ICESat-2 land surface algorithm. Geophys. Res. Lett. 2020, 47, e2019GL085907. [Google Scholar] [CrossRef]
- Ryan, J.C.; Smith, L.C.; Cooley, S.W.; Pitcher, L.H.; Pavelsky, T.M. Global characterization of inland water reservoirs using ICESat-2 altimetry and climate reanalysis. Geophys. Res. Lett. 2020, 47, e2020GL088543. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Jasinski, M.F.; Zhang, S.; Stoll, J.D. Deriving high-resolution reservoir bathymetry from ICESat-2 prototype photon-counting lidar and landsat imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7883–7893. [Google Scholar] [CrossRef]
- Xu, N.; Zheng, H.; Ma, Y.; Yang, J.; Liu, X.; Wang, X. Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 products. Remote Sens. 2021, 13, 2744. [Google Scholar] [CrossRef]
- Liu, C.; Hu, R.; Wang, Y.; Lin, H.; Zeng, H.; Wu, D.; Liu, Z.; Dai, Y.; Song, X.; Shao, C. Monitoring water level and volume changes of lakes and reservoirs in the Yellow River Basin using ICESat-2 laser altimetry and Google Earth Engine. J. Hydro-Environ. Res. 2022, 44, 53–64. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W. The Ice, Cloud, and Land Elevation Satellite–2 Mission: A global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Herzfeld, U.C.; McDonald, B.W.; Wallin, B.F.; Neumann, T.A.; Markus, T.; Brenner, A.; Field, C. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2109–2125. [Google Scholar] [CrossRef]
- Re, X.; Wang, G.; Wang, Y.; Luo, J.; Ma, Y. Geomorphological characteristics of the coexistence area of crescent dunes and parabolic dunes in the western Hunshandake Sandy Land. Arid Zone Res./Ganhanqu Yanjiu 2023, 40, 2016–2030. [Google Scholar]
- Yang, J.; Zheng, H.; Ma, Y.; Zhao, P.; Zhou, H.; Li, S.; Wang, X.H. Background noise model of spaceborne photon-counting lidars over oceans and aerosol optical depth retrieval from ICESat-2 noise data. Remote Sens. Environ. 2023, 299, 113858. [Google Scholar] [CrossRef]
- Tang, L.; Yang, H.; Zhang, H. The application of the Kernel Density Estimates in predicting VaR. Math. Pract. Underst 2005, 35, 31–37. [Google Scholar]
- Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar] [CrossRef] [PubMed]
- Harpole, J.K.; Woods, C.M.; Rodebaugh, T.L.; Levinson, C.A.; Lenze, E.J. How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation. Psychol. Methods 2014, 19, 428. [Google Scholar] [CrossRef] [PubMed]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Oxfordshire, UK, 2018. [Google Scholar]
- Neuenschwander, A.L.; Pitts, K.; Jelley, B.; Robbins, J.; Klotz, B.; Popescu, S.C.; Nelson, R.F.; Harding, D.; Pederson, D.; Sheridan, R. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021.
- Gwenzi, D.; Lefsky, M.A.; Suchdeo, V.P.; Harding, D.J. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS J. Photogramm. Remote Sens. 2016, 118, 68–82. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Sun, J.; Wang, X.H.; Yang, F.; Li, S. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets. Remote Sens. Environ. 2019, 232, 111287. [Google Scholar] [CrossRef]
Classification | Actual Water Photons | Actual Land Photons |
---|---|---|
Classified water photons | TP | FP |
Classified land photons | FN | TN |
Research Dataset | Classification Method | TP | TN | FP | FN | All |
---|---|---|---|---|---|---|
A | The proposed photon dispersion algorithm | 4733 | 46,652 | 22 | 163 | 51,570 |
The improved RANSAC algorithm | 4701 | 38,775 | 7899 | 195 | 51,570 | |
The RANSAC + DBSCAN algorithms | 4701 | 46,275 | 399 | 195 | 51,570 | |
B | The proposed photon dispersion algorithm | 21,239 | 53,242 | 20 | 933 | 75,434 |
The improved RANSAC algorithm | 20,606 | 36,268 | 16,994 | 1566 | 75,434 | |
The RANSAC + DBSCAN algorithms | 20,179 | 51,116 | 2146 | 1993 | 75,434 | |
C | The proposed photon dispersion algorithm | 66,927 | 31,900 | 1143 | 218 | 100,188 |
The improved RANSAC algorithm | 63,550 | 26,913 | 6130 | 3595 | 100,188 | |
The RANSAC + DBSCAN algorithms | 57,426 | 32,179 | 864 | 9719 | 100,188 | |
D | The proposed photon dispersion algorithm | 12,923 | 22,010 | 45 | 36 | 35,014 |
The improved RANSAC algorithm | 12,904 | 17,237 | 4818 | 55 | 35,014 | |
The RANSAC + DBSCAN algorithms | 12,904 | 17,670 | 4385 | 55 | 35,014 |
Research Dataset | A | B | C | D | Mean | |||||
---|---|---|---|---|---|---|---|---|---|---|
Evaluation Index | OA | Kappa | OA | Kappa | OA | Kappa | OA | Kappa | OA | Kappa |
The proposed algorithm | 99.64% | 97.89% | 98.74% | 96.92% | 98.34% | 96.91% | 99.77% | 99.50% | 99.12% | 97.81% |
RANSAC | 84.30% | 46.41% | 75.40% | 50.73% | 90.29% | 77.61% | 86.08% | 72.25% | 84.02% | 61.75% |
RANSAC + DBSCAN | 98.85% | 93.42% | 94.51% | 86.81% | 89.44% | 77.63% | 87.32% | 74.56% | 92.53% | 83.11% |
Research Dataset | Total Length along Track (m) | Water Bodies Length (m) | Land Length (m) | Water Bodies Percentage (%) | W/L Ratio (%) | Number of Water Bodies |
---|---|---|---|---|---|---|
A | 8575 | 1550 | 7025 | 0.181 | 0.221 | 2 |
B | 9010 | 3190 | 5820 | 0.354 | 0.548 | 4 |
C | 63,810 | 34,235 | 29,575 | 0.537 | 1.158 | 8 |
D | 11,300 | 630 | 10,670 | 0.056 | 0.059 | 1 |
Research Dataset | Threshold | W/L Ratio (%) | Long Tail | OA (%) | KC (%) |
---|---|---|---|---|---|
A | First peak | 0.221 | No | 99.64 | 97.89 |
First trough | 94.44 | 73.52 | |||
Second peak | 17.10 | 1.71 | |||
B | First peak | 0.548 | No | 98.74 | 96.92 |
First trough | 79.18 | 57.75 | |||
Second peak | 60.25 | 30.63 | |||
C | First peak | 1.158 | Yes | 98.34 | 96.91 |
First trough | 97.79 | 95.00 | |||
Second peak | 96.75 | 92.56 | |||
D | First peak | 0.059 | Yes | 99.77 | 99.50 |
First trough | 99.26 | 98.49 | |||
Second peak | 99.14 | 98.17 |
Research Dataset | A | B | C | D |
---|---|---|---|---|
Number of peaks | 5 | 5 | 15 | 13 |
Maximum STD | 4.3 | 31.1 | 5.2 | 15.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Liu, X.; Zhao, X. Extraction of River Water Bodies Based on ICESat-2 Photon Classification. Remote Sens. 2024, 16, 3034. https://doi.org/10.3390/rs16163034
Ma W, Liu X, Zhao X. Extraction of River Water Bodies Based on ICESat-2 Photon Classification. Remote Sensing. 2024; 16(16):3034. https://doi.org/10.3390/rs16163034
Chicago/Turabian StyleMa, Wenqiu, Xiao Liu, and Xinglei Zhao. 2024. "Extraction of River Water Bodies Based on ICESat-2 Photon Classification" Remote Sensing 16, no. 16: 3034. https://doi.org/10.3390/rs16163034
APA StyleMa, W., Liu, X., & Zhao, X. (2024). Extraction of River Water Bodies Based on ICESat-2 Photon Classification. Remote Sensing, 16(16), 3034. https://doi.org/10.3390/rs16163034