BresNet: Applying Residual Learning in Backpropagation Neural Networks to Predict Ground Surface Concentration of Primary Air Pollutants
Abstract
:1. Introduction
2. Data Collection and Preprocessing
2.1. Research Area
2.2. Data Collection
2.3. Data Preprocessing
3. Methodology
3.1. Structure of MLBPN
3.2. Establishment of BresNet Model
3.2.1. Residual Block
3.2.2. Model Design
3.2.3. Model Optimization
- Activation Function in Forward Propagation
- 2.
- Loss Function
- 3.
- Optimizer of Backpropagation
4. Experiments and Results
4.1. Model Training
4.2. Evaluation Metrics
4.3. Model Performances
4.3.1. Model Training Performance
4.3.2. Model Prediction Performance
5. Discussion
6. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Scatterplots between the Monitored Values and the Predicted Values
References
- Steg, L. Psychology of Climate Change. Annu. Rev. Psychol. 2023, 74, 391–421. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Chen, H.; Wei, Z.; Li, Y.; Zhang, B.; Sun, H.; Cheng, M. Improved Surface Soil Moisture Estimation Model in Semi-Arid Regions Using the Vegetation Red-Edge Band Sensitive to Plant Growth. Atmosphere 2022, 13, 930. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Luo, L.; Chen, X.; Zhang, Y.; Zhang, H.; Yang, S.; Li, Y. Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020. Atmosphere 2021, 12, 1298. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global Glacier Mass Changes and Their Contributions to Sea-Level Rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; van Donkelaar, A.; Martin, R.V.; Burnett, R.; Rainham, D.G.; Birkett, N.J.; Krewski, D. Estimates of Global Mortality Attributable to Particulate Air Pollution Using Satellite Imagery. Environ. Res. 2013, 120, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Luppino, L.T.; Kampffmeyer, M.; Bianchi, F.M.; Moser, G.; Serpico, S.B.; Jenssen, R.; Anfinsen, S.N. Deep Image Translation with an Affinity-Based Change Prior for Unsupervised Multimodal Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4700422. [Google Scholar] [CrossRef]
- Guo, H.; Gu, X.; Ma, G.; Shi, S.; Wang, W.; Zuo, X.; Zhang, X. Spatial and Temporal Variations of Air Quality and Six Air Pollutants in China during 2015–2017. Sci. Rep. 2019, 9, 15201. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Xiao, Q.; Wang, Y.; Lyapustin, A.; Li, G.; Gu, D.; Pan, X.; Liu, Y. MAIAC-Based Long-Term Spatiotemporal Trends of PM2.5 in Beijing, China. Sci. Total Environ. 2018, 616–617, 1589–1598. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, L.; Lau, A.K.; Chan, T.-C.; Chuang, Y.C.; Chan, J.; Lin, C.; Jiang, W.K.; Dear, K.; Zee, B.C.-Y.; et al. Satellite-Based Estimates of Long-Term Exposure to Fine Particulate Matter Are Associated with C-Reactive Protein in 30 034 Taiwanese Adults. Int. J. Epidemiol. 2017, 46, 1126–1136. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between Satellite-derived Aerosol Optical Thickness and PM 2.5 Mass: Implications for Air Quality Studies. Geophys. Res. Lett. 2003, 30, 2095. [Google Scholar] [CrossRef]
- Yuan, X.; Xia, Y.; He, J.; Cheng, M.; Qi, B.; Yu, Z.; Wang, B. Study on Accuracy Evaluation of MODIS AOD Products and Spatio-Temporal Distribution Characteristics of AOD in Hangzhou. Sustainability 2023, 15, 10171. [Google Scholar] [CrossRef]
- Han, S.; Park, Y.; Noh, N.; Kim, J.-H.; Kim, J.-J.; Kim, B.-M.; Choi, W. Spatiotemporal Variability of the PM2.5 Distribution and Weather Anomalies during Severe Pollution Events: Observations from 462 Air Quality Monitoring Stations across South Korea. Atmos. Pollut. Res. 2023, 14, 101676. [Google Scholar] [CrossRef]
- Fishtahler, L.E. Standard Data Products from the MODIS Science Team. In Proceedings of the IGARSS’97, 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; Volume 3, pp. 1249–1251. [Google Scholar]
- Nsabimana, A.; Li, P. Hydrogeochemical Characterization and Appraisal of Groundwater Quality for Industrial Purpose Using a Novel Industrial Water Quality Index (IndWQI) in the Guanzhong Basin, China. Geochemistry 2023, 83, 125922. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Zou, Y. Construction of an Ecological Security Pattern Based on Ecosystem Sensitivity and the Importance of Ecological Services: A Case Study of the Guanzhong Plain Urban Agglomeration, China. Ecol. Indic. 2022, 136, 108688. [Google Scholar] [CrossRef]
- Falkenheim, V.C.; Twitchett, D.C. Shaanxi. 2024. Available online: https://www.britannica.com/place/Shaanxi (accessed on 27 June 2024).
- Google Earth Engine, A Planetary-Scale Platform for Earth Science & Data Analysis. Available online: https://earthengine.google.com/ (accessed on 27 June 2024).
- USGS (United States Geological Survey). Available online: https://earthexplorer.usgs.gov (accessed on 27 June 2024).
- Zhang, B.; Zhang, M.; Kang, J.; Hong, D.; Xu, J.; Zhu, X. Estimation of PMx Concentrations from Landsat 8 OLI Images Based on a Multilayer Perceptron Neural Network. Remote Sens. 2019, 11, 646. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Lee, S.; Choeh, J.Y. Predicting the Helpfulness of Online Reviews Using Multilayer Perceptron Neural Networks. Expert Syst. Appl. 2014, 41, 3041–3046. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Bera, S.; Shrivastava, V.K. Analysis of Various Optimizers on Deep Convolutional Neural Network Model in the Application of Hyperspectral Remote Sensing Image Classification. Int. J. Remote Sens. 2020, 41, 2664–2683. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Li, Y.; Zhang, M.; Ma, G.; Ren, H.; Yu, E. Analysis of Primary Air Pollutants’ Spatiotemporal Distributions Based on Satellite Imagery and Machine-Learning Techniques. Atmosphere 2024, 15, 287. [Google Scholar] [CrossRef]
- Hong, J.; Mao, F.; Min, Q.; Pan, Z.; Wang, W.; Zhang, T.; Gong, W. Improved PM2.5 Predictions of WRF-Chem via the Integration of Himawari-8 Satellite Data and Ground Observations. Environ. Pollut. 2020, 263, 114451. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Zhang, M.; Ma, G. Regional Representativeness Analysis of Ground-Monitoring PM2.5 Concentration Based on Satellite Remote Sensing Imagery and Machine Learning Techniques. Remote Sens. 2023, 15, 3040. [Google Scholar] [CrossRef]
Category | Variable | Unit | Temporal Resolution | Spatial Resolution | Data Source |
---|---|---|---|---|---|
Satellite Remote sensing images | MCD19A2 | dimensionless | 1–2 Days | 1000 m | GEE, USGS |
Air quality data | PM2.5 PM10 O3 CO NO2 SO2 | μg/m3 μg/m3 μg/m3 mg/m3 μg/m3 μg/m3 | 1 h | CNEMC | |
Meteorological data | Temperature Relative humidity Atmospheric pressure Wind direction Wind speed | 3 h | NOAA | ||
Temperature Dew temperature U wind component V wind component Surface pressure | 1 h | 11,132 m | ERA5-Land GEE |
Satellite Production | Accuracy Evaluation | Model | Pollutants | |||||
---|---|---|---|---|---|---|---|---|
PM2.5 | PM10 | O3 | NO2 | CO | SO2 | |||
MODIS AOD | R2 | RF | 0.8 | 0.68 | 0.8 | 0.64 | 0.65 | 0.35 |
MLBPN | 0.72 | 0.49 | 0.68 | 0.38 | 0.5 | 0.23 | ||
BresNet (ours) | 0.95 | 0.91 | 0.92 | 0.89 | 0.84 | 0.83 | ||
RMSE (μg/m3) | RF | 15.24 | 27.14 | 13.55 | 10.6 | 191 | 4.26 | |
MLBPN | 18.52 | 34.90 | 17.51 | 13.99 | 227 | 4.18 | ||
BresNet (ours) | 7.56 | 18.00 | 8.7 | 5.61 | 127 | 2.24 | ||
MAE (μg/m3) | RF | 10.23 | 19.75 | 10.11 | 8.06 | 137 | 2.49 | |
MLBPN | 12.87 | 25.93 | 13.91 | 10.87 | 169 | 2.8 | ||
BresNet (ours) | 5.05 | 11.36 | 6.4 | 4.07 | 96 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Zhang, M.; Han, M.; Zhang, Y.; Ma, G.; Ren, H. BresNet: Applying Residual Learning in Backpropagation Neural Networks to Predict Ground Surface Concentration of Primary Air Pollutants. Remote Sens. 2024, 16, 2897. https://doi.org/10.3390/rs16162897
Shi Z, Zhang M, Han M, Zhang Y, Ma G, Ren H. BresNet: Applying Residual Learning in Backpropagation Neural Networks to Predict Ground Surface Concentration of Primary Air Pollutants. Remote Sensing. 2024; 16(16):2897. https://doi.org/10.3390/rs16162897
Chicago/Turabian StyleShi, Zekai, Meng Zhang, Mei Han, Yaowei Zhang, Guodong Ma, and Haoyuan Ren. 2024. "BresNet: Applying Residual Learning in Backpropagation Neural Networks to Predict Ground Surface Concentration of Primary Air Pollutants" Remote Sensing 16, no. 16: 2897. https://doi.org/10.3390/rs16162897
APA StyleShi, Z., Zhang, M., Han, M., Zhang, Y., Ma, G., & Ren, H. (2024). BresNet: Applying Residual Learning in Backpropagation Neural Networks to Predict Ground Surface Concentration of Primary Air Pollutants. Remote Sensing, 16(16), 2897. https://doi.org/10.3390/rs16162897