Calculating Vegetation Index-Based Crop Coefficients for Alfalfa in the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2 (HLS) Data and Eddy Covariance Flux Tower Data
Abstract
1. Introduction
2. Description of the Study Site and Methodology
2.1. Site Description and Alfalfa Crop
2.2. Evapotranspiration Using the Eddy Covariance Method
2.3. Satellite Data
2.4. Spectral Indices
2.5. Vegetation Indices-Based Crop Coefficients
2.6. Statistical Analysis
2.7. Comparison to OpenET
3. Results and Discussion
3.1. Regression Equations for KcVI
3.2. Comparisons of Estimated and Measured ETc
3.3. Differences between ET Measurements Based on Vegetation Indices
3.4. Agreement with OpenET Ensemble
3.5. Evaluation and Next Steps
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | DOY | Sensor | Study Site Aerosol Level | Date | DOY | Sensor | Study Site Aerosol Level |
---|---|---|---|---|---|---|---|
9 April 2017 | 99 | Sentinel | Low | 5 September 2017 | 248 | Landsat | Low |
30 April 2017 | 120 | Landsat | Low | 11 September 2017 | 254 | Sentinel | Low |
19 May 2017 | 139 | Sentinel | Low | 21 September 2017 | 264 | Landsat | Low |
1 June 2017 | 152 | Landsat | High | 1 October 2017 | 274 | Sentinel | Low |
8 June 2017 | 159 | Sentinel | Low | 6 October 2017 | 279 | Sentinel | Low |
17 June 2017 | 168 | Landsat | Low | 7 October 2017 | 280 | Landsat | Low |
28 June 2017 | 179 | Sentinel | Low/Moderate | 21 October 2017 | 294 | Sentinel | Low |
18 July 2017 | 199 | Sentinel | Low/Moderate | 23 October 2017 | 296 | Landsat | Low |
19 July 2017 | 200 | Landsat | Low | 26 October 2017 | 299 | Sentinel | Low |
2 August 2017 | 214 | Sentinel | Moderate/High | 10 November 2017 | 314 | Sentinel | Low |
4 August 2017 | 216 | Landsat | Low | 15 November 2017 | 319 | Sentinel | Low |
7 August 2017 | 219 | Sentinel | Low | 20 November 2017 | 324 | Sentinel | Low/Moderate |
22 August 2017 | 234 | Sentinel | Low | 24 November 2017 | 328 | Landsat | Low |
VI | F-Statistic | p-Value | VI | F-Statistic | p-Value |
---|---|---|---|---|---|
ARVI | 0.61 | 0.72 | MSI | 1.88 | 0.20 |
EVI | 1.58 | 0.27 | NDVI | 1.67 | 0.25 |
EXG | 1.69 | 0.24 | NGRDI | −0.49 | 1.00 |
GEMI | 2.27 | 0.14 | NMDI | 0.86 | 0.56 |
GNDVI | 1.52 | 0.28 | RDVI | 1.41 | 0.32 |
GRVI | 0.03 | 0.47 | TDVI | 2.04 | 0.17 |
II | 1.10 | 0.44 | VARI | −0.18 | 1.00 |
MSAVI | 2.09 | 0.16 | VDVI | 1.12 | 0.43 |
References
- Bastiaanssen, W.G.M. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates. Ph.D. Thesis, DLO Winand Staring Centre, Wageningen, The Netherlands, 1995; 271p. [Google Scholar]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Senay, G.B. Satellite Psychrometric Formulation of the Operational Simplified Surface Energy Balance (Ssebop) Model for Quantifying and Mapping Evapotranspiration. Appl. Eng. Agric. 2018, 34, 555–566. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Djaman, K.; Irmak, S. Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J. Irrig. Drain. Eng. 2013, 139, 433–446. [Google Scholar] [CrossRef]
- Rocha, J.; Perdigão, A.; Melo, R.; Henriques, C. Remote sensing based crop coefficients for water management in agriculture. In Sustainable Development—Authoritative and Leading Edge Content for Environmental Management; Curkovic, S., Ed.; INTECH: Haarlem, The Netherlands, 2012; pp. 167–192. [Google Scholar]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’Halloran, T. Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.J.; Kimball, B.A. Wheat basal crop coefficients determined by normalized difference vegetation index. Irrig. Sci. 2005, 24, 1–14. [Google Scholar] [CrossRef]
- Zanter, K. Landsat 8 (L8) Data Users Handbook; Landsat Science Official Website USGS: Reston, VA, USA, 2016; p. 33.
- Sellers, P.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005; p. 526. [Google Scholar]
- Baret, F. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Proceedings of the 12th Canadian Symp. on Remote Sensing and IGARSS’90, Vancouver, BC, Canada, 10–14 July 1989. [Google Scholar]
- Campos, I.; Neale, C.M.; Suyker, A.E.; Arkebauer, T.J.; Gonçalves, I.Z. Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties. Agric. Water Manag. 2017, 187, 140–153. [Google Scholar] [CrossRef]
- Kamble, B.; Kilic, A.; Hubbard, K. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 2013, 5, 1588. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 2020, 239, 106266. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-l Symposium, Washingdon, WA, USA, 10–14 December 1973. [Google Scholar]
- Huete, A.R. A soil-Adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Hardisky, M.; Klemas, V.; Smart, M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- Gonzalez-Piqueras, J.; Calera, A.; Gilabert, M.A.; Cuesta, A.; De la Cruz Tercero, F. Estimation of crop coefficients by means of optimized vegetation indices for corn. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology V, Barcelona, Spain, 24 February 2004; pp. 110–118. [Google Scholar]
- Samani, Z.; Skaggs, R.; Longworth, J. Alfalfa Water Use and Crop Coefficients across the Watershed: From Theory to Practice. J. Irrig. Drain. Eng. 2013, 139, 341–348. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Malm, N.R. Climate Guide Las Cruces, 1892–2000; New Mexico State University Agricultural Experiment Station: Las Cruces, NM, USA, 2003. [Google Scholar]
- Albano, C.M.; Abatzoglou, J.T.; McEvoy, D.J.; Huntington, J.L.; Morton, C.G.; Dettinger, M.D.; Ott, T.J. A Multidataset Assessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States. J. Hydrometeorol. 2022, 23, 505–519. [Google Scholar] [CrossRef]
- NMDA. New Mexico Agricultural Statistics 2018 Annual Bulletin; Department of Agriculture State of New Mexicomsc: Las Cruces, NM, USA, 2019.
- Sanderson, M.A.; Karnezos, T.; Matches, A. Morphological development of alfalfa as a function of growing degree days. J. Prod. Agric. 1994, 7, 239–242. [Google Scholar] [CrossRef]
- Boyko, K.; Fernald, A.G.; Bawazir, A.S. Improving groundwater recharge estimates in alfalfa fields of New Mexico with actual evapotranspiration measurements. Agric. Water Manag. 2020, 244, 106532. [Google Scholar] [CrossRef]
- Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T. Estimating evaporation with thermal UAV data and two-source energy balance models. Hydrol. Earth Syst. Sci. 2016, 20, 697. [Google Scholar] [CrossRef]
- Bawazir, A.S.; Luthy, R.; King, J.P.; Tanzy, B.F.; Solis, J. Assessment of the crop coefficient for saltgrass under native riparian field conditions in the desert southwest. Hydrol. Process. 2014, 28, 6163–6171. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef]
- Jafari, R.; Lewis, M.M.; Ostendorf, B. Evaluation of vegetation indices for assessing vegetation cover in southern arid lands in South Australia. Rangel. J. 2007, 29, 39–49. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (Arvi) for Eos-Modis. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of Vegetation and Soil Indices for Modis-Eos. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M.M. Gemi: A Non-Linear Index to Monitor Global Vegetation from Satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial Color Infrared Photography for Determining Late-Season Nitrogen Requirements in Corn. Agron. J. 2005, 97, 1443–1451. [Google Scholar] [CrossRef]
- Rock, B.N.; Vogelmann, J.E.; Williams, D.L.; Vogelmann, A.F.; Hoshizaki, T. Remote Detection of Forest Damage. Bioscience 1986, 36, 439–445. [Google Scholar] [CrossRef]
- Bannari, A.; Asalhi, H.; Teillet, P.M. Transformed Difference Vegetation Index (Tdvi) for Vegetation Cover Mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Xiaoqin, W.; Miaomiao, W.; Shaoqiang, W.; Yundong, W. Extraction of Vegetation Information from Visible Unmanned Aerial Vehicle Images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152–159. [Google Scholar]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B. OpenET: Filling a critical data gap in water management for the western United States. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 971–994. [Google Scholar] [CrossRef]
- Volk, J.M.; Huntington, J.L.; Melton, F.S.; Allen, R.; Anderson, M.; Fisher, J.B.; Kilic, A.; Ruhoff, A.; Senay, G.B.; Minor, B. Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nat. Water 2024, 2, 193–205. [Google Scholar] [CrossRef]
- Sabiston, L.; Sabie, R.; Buenemann, M.; Stringam, B.; Fernald, A. Comparing field-scale eddy covariance measurements and crop coefficient estimates of alfalfa evapotranspiration to OpenET model estimates and exploring water budget implications in a dryland environment. Irrig. Sci. 2024, 42, 1–18. [Google Scholar] [CrossRef]
- Tawalbeh, Z.M.; Bawazir, A.S.; Fernald, A.; Sabie, R.; Heerema, R.J. Assessing Satellite-Derived OpenET Platform Evapotranspiration of Mature Pecan Orchard in the Mesilla Valley, New Mexico. Remote Sens. 2024, 16, 1429. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [Google Scholar] [CrossRef]
- Li, M.-F.; Tang, X.-P.; Wu, W.; Liu, H.-B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers. Manag. 2013, 70, 139–148. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Nagler, P.L.; Glenn, E.P.; Nguyen, U.; Scott, R.L.; Doody, T. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens. 2013, 5, 3849–3871. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Gao, R.; Yang, Y.; Knipper, K.; Alsina, M.M.; Sanchez, L.A.; Melton, F.; Nieto, H.; Bambach, N.E.; Gao, F.; Alfieri, J. 38HYDRO Estimating 3-m Evapotranspiration Using Planet, OpenET, and Machine Learning Techniques. In Proceedings of the 104th AMS Annual Meeting, Baltimore, MD, USA, 28 January–1 February 2024. [Google Scholar]
Irrigation Event | Date | DOY | Irrigation (mm) | Precipitation (mm) |
---|---|---|---|---|
1 | 3 March 2017 | 62 | 202 | 0 |
2 | 21 March 2017 | 80 | 141 | 0 |
3 | 4 April 2017 | 94 | 142 | 2 |
4 | 3 May 2017 | 123 | 137 | 0 |
5 | 16 May 2017 | 136 | 173 | 5 |
6 | 11 June 2017 | 162 | 160 | 1 |
7 | 7 July 2017 | 188 | 176 | 154 |
8 | 16 August 2017 | 228 | 134 | 43 |
9 | 15 September 2017 | 258 | 222 | 1 |
10 | 25 September 2017 | 268 | 188 | 15 |
11 | 1 November 2017 | 305 | 199 | 11 |
Cutting Event | Cut Date | DOY |
---|---|---|
1 | 20 April 2017 | 110 |
2 | 2 June 2017 | 153 |
3 | 29 June 2017 | 180 |
4 | 6 August 2017 | 218 |
5 | 4 September 2017 | 247 |
6 | 18 October 2017 | 291 |
7 | 27 November 2017 | 331 |
Landsat OLI | Sentinel-2 | ||
---|---|---|---|
Center wavelength | Blue | 482.04 | 492 |
Green | 561.41 | 560 | |
Red | 654.59 | 665 | |
Near Infrared | 864.47 | 833 | |
Shortwave Infrared 1 | 1608.86 | 1614 | |
Shortwave Infrared 2 | 2220.0 | 2190 | |
Bandwidth | Blue | 60.04 | 66 |
Green | 57.33 | 36 | |
Red | 37.47 | 31 | |
Near Infrared | 28.25 | 106 | |
Shortwave Infrared 1 | 84.7 | 91 | |
Shortwave Infrared 2 | 175 | 180 |
Name | Equation | Reference |
---|---|---|
Atmospherically Resistant Vegetation Index | [38] | |
Enhanced Vegetation Index | [39] | |
Excess Green Index | [40] | |
Global Environment Monitoring Index | [41] | |
Green NDVI | [22] | |
Green Ratio Vegetation Index | [42] | |
Infrared Index | [23] | |
Modified Soil Adjusted Vegetation Index | [20] | |
Moisture Stress Index | [43] | |
Normalized Green-Red Difference Index | [21] | |
Normalized Difference Vegetation Index | [17] | |
Normalized Multi-band Drought Index | [24] | |
Renormalized Difference Vegetation Index | [19] | |
Transformed Difference Vegetation Index | [44] | |
Visible Atmospherically Resistant Index | [21] | |
Visible-band Difference Vegetation Index | [45] |
VI | KcVI | r2 | RMSE | VI | KcVI | r2 | RMSE |
---|---|---|---|---|---|---|---|
ARVI | 1.59 × ARVI + 0.54 | 0.72 | 0.16 | MSI | −0.89 × MSI + 1.52 | 0.85 | 0.12 |
EVI | 1.28 × EVI + 0.2 | 0.74 | 0.15 | NDVI | 1.48 × NDVI − 0.12 | 0.88 | 0.10 |
EXG | 14.2 × EXG + 0.33 | 0.81 | 0.13 | NGRDI | 1.65 × NGRDI + 0.69 | 0.90 | 0.09 |
GEMI | 1.72 × GEMI − 0.42 | 0.67 | 0.17 | NMDI | 2.16 × NMDI + 0.11 | 0.76 | 0.15 |
GNDVI | 2.26 × GNDVI − 0.59 | 0.82 | 0.13 | RDVI | 1.77 × RDVI + 0.07 | 0.76 | 0.15 |
GRVI | 0.11 × GRVI + 0.3 | 0.70 | 0.16 | TDVI | 3.16 × TDVI − 2.53 | 0.88 | 0.10 |
II | 1.29 × II + 0.62 | 0.82 | 0.13 | VARI | 2.17 × VARI + 0.69 | 0.90 | 0.10 |
MSAVI | 1.34 × MSAVI + 0.22 | 0.74 | 0.15 | VDVI | −4.55 × VDVI + 1.82 | 0.76 | 0.15 |
Index | Count | Index | Count |
---|---|---|---|
ARVI | 2 | MSI | 1 |
EVI | 2 | NDVI | 1 |
EXG | 3 | NGRDI | 3 |
GEMI | 2 | NMDI | 1 |
GNDVI | 0 | RDVI | 2 |
GRVI | 1 | TDVI | 2 |
II | 1 | VARI | 3 |
MSAVI | 2 | VDVI | 2 |
VI | MAE (mm/day) | MSE (mm/day) | MAPD (%) | rRMSE (%) | VI | MAE (mm/day) | MSE (mm/day) | MAPD (%) | rRMSE (%) |
---|---|---|---|---|---|---|---|---|---|
ARVI | 0.62 | 0.64 | 15.7 | 17.2 | MSI | 0.49 | 0.35 | 13.1 | 12.8 |
EVI | 0.60 | 0.61 | 15.0 | 16.8 | NDVI | 0.41 | 0.26 | 12.0 | 11.0 |
EXG | 0.51 | 0.42 | 14.0 | 13.8 | NGRDI | 0.35 | 0.20 | 10.0 | 9.5 |
GEMI | 0.63 | 0.75 | 16.3 | 18.6 | NMDI | 0.57 | 0.51 | 14.4 | 15.3 |
GNDVI | 0.51 | 0.39 | 13.9 | 13.3 | RDVI | 0.58 | 0.57 | 14.7 | 16.2 |
GRVI | 0.64 | 0.60 | 16.5 | 16.6 | TDVI | 0.42 | 0.28 | 12.3 | 11.3 |
II | 0.51 | 0.40 | 13.0 | 13.5 | VARI | 0.36 | 0.21 | 10.0 | 9.7 |
MSAVI | 0.59 | 0.61 | 14.8 | 16.7 | VDVI | 0.52 | 0.42 | 16.3 | 13.9 |
VI | r2 | MAE (mm/day) | MSE (mm/day) | MAPD (%) | rRMSE (%) | VI | r2 | MAE (mm/day) | MSE (mm/day) | MAPD (%) | rRMSE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
ARVI | 0.71 | 0.71 | 0.98 | 30.42 | 25.1 | MSI | 0.79 | 0.59 | 0.71 | 24.91 | 21.5 |
EVI | 0.76 | 0.66 | 0.82 | 29.55 | 23.1 | NDVI | 0.75 | 0.68 | 0.85 | 26.41 | 23.4 |
EXG | 0.75 | 0.69 | 0.87 | 26.99 | 23.7 | NGRDI | 0.75 | 0.68 | 0.84 | 30.95 | 23.3 |
GEMI | 0.68 | 0.73 | 1.10 | 33.44 | 26.7 | NMDI | 0.75 | 0.67 | 0.86 | 34.96 | 23.6 |
GNDVI | 0.71 | 0.73 | 0.99 | 29.65 | 25.3 | RDVI | 0.76 | 0.66 | 0.82 | 27.91 | 23.0 |
GRVI | 0.73 | 0.73 | 0.94 | 34.16 | 24.7 | TDVI | 0.74 | 0.69 | 0.87 | 25.94 | 23.8 |
II | 0.78 | 0.61 | 0.74 | 27.88 | 21.9 | VARI | 0.75 | 0.69 | 0.86 | 31.20 | 23.6 |
MSAVI | 0.76 | 0.67 | 0.84 | 29.64 | 23.3 | VDVI | 0.28 | 1.19 | 2.46 | 61.87 | 39.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabie, R.; Bawazir, A.S.; Buenemann, M.; Steele, C.; Fernald, A. Calculating Vegetation Index-Based Crop Coefficients for Alfalfa in the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2 (HLS) Data and Eddy Covariance Flux Tower Data. Remote Sens. 2024, 16, 2876. https://doi.org/10.3390/rs16162876
Sabie R, Bawazir AS, Buenemann M, Steele C, Fernald A. Calculating Vegetation Index-Based Crop Coefficients for Alfalfa in the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2 (HLS) Data and Eddy Covariance Flux Tower Data. Remote Sensing. 2024; 16(16):2876. https://doi.org/10.3390/rs16162876
Chicago/Turabian StyleSabie, Robert, A. Salim Bawazir, Michaela Buenemann, Caitriana Steele, and Alexander Fernald. 2024. "Calculating Vegetation Index-Based Crop Coefficients for Alfalfa in the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2 (HLS) Data and Eddy Covariance Flux Tower Data" Remote Sensing 16, no. 16: 2876. https://doi.org/10.3390/rs16162876
APA StyleSabie, R., Bawazir, A. S., Buenemann, M., Steele, C., & Fernald, A. (2024). Calculating Vegetation Index-Based Crop Coefficients for Alfalfa in the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2 (HLS) Data and Eddy Covariance Flux Tower Data. Remote Sensing, 16(16), 2876. https://doi.org/10.3390/rs16162876