A Novel Method for CSAR Multi-Focus Image Fusion
Abstract
1. Introduction
2. Method and Application
2.1. Characteristics of CSAR Images
2.2. Spatial Domain Method Based on SML
2.3. Concept of Guided Filter
2.4. Data Process
2.4.1. Multi-Layer Imaging
2.4.2. Focus Region Detection
2.4.3. Guided Filter
2.4.4. Fused Result
3. Experiments and Results
3.1. Evaluation Metrics
- All Cross-Entropy (ACE)
- 2.
- Structural similarity (SSIM)
- 3.
- Sum mutual information (SMI)
- 4.
- Edge retention (ER)
- 5.
- Equivalent Number of Looks (ENL)
3.2. Parameter Setting
3.3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.W.; An, D.X.; Wang, W.; Luo, Y.X.; Zhou, Z.M. Extended Polar Format Algorithm for Large-Scene High-Resolution WAS-SAR Imaging. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5326–5338. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, Y.; Teng, F.; Feng, S.S.; Hong, W. Holographic SAR Volumetric Imaging Strategy for 3-D Imaging with Single-Pass Circular InSAR Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Octavio, P.; Pau, P.I.; Muriel, P.; Marc, R.C.; Rolf, S.; Andreas, R.; Alberto, M. Fully Polarimetric High-Resolution 3-D Imaging with Circular SAR at Lband. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3074–3090. [Google Scholar]
- Chen, L.P.; An, D.X.; Huang, X.T. A Backprojection Based Imaging for Circular Synthetic Aperture Radar. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3547–3555. [Google Scholar] [CrossRef]
- Fan, B.; Qin, Y.L.; You, P.; Wang, H.Q. An Improved PFA with Aperture Accommodation for Widefield Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 3–7. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, S.; Huang, S.Y.; Lin, P. Multifocus Image Fusion Based on NSCT and Focused Area Detection. IEEE Sens. J. 2015, 15, 2824–2838. [Google Scholar]
- Karacan, L. Multi-image transformer for multi-focus image fusion. Signal Process. Image Commun. 2023, 119, 117058. [Google Scholar] [CrossRef]
- Li, S.T.; Kang, X.D.; Hu, J.W. Image fusion with guided filtering. IEEE Trans. Image Process. 2013, 22, 2864–2875. [Google Scholar]
- Liu, Y.; Liu, S.P.; Wang, Z.F. Multi-focus image fusion with dense SIFT. Inf. Fusion 2015, 23, 139–155. [Google Scholar] [CrossRef]
- Bouzos, O.; Andreadis, I.; Mitianoudis, N. Conditional random field model for robust multi-focus image fusion. IEEE Trans. Image Process. 2019, 28, 5636–5648. [Google Scholar] [CrossRef]
- Chen, Y.B.; Guan, J.W.; Cham, W.K. Robust multi-focus image fusion using edge model and multi-matting. IEEE Trans. Image Process. 2018, 27, 1526–1541. [Google Scholar] [CrossRef]
- Xiao, B.; Ou, G.; Tang, H.; Bi, X.L.; Li, W.S. Multi-focus image fusion by hessian matrix based decomposition. IEEE Trans. Multimed. 2020, 22, 285–297. [Google Scholar] [CrossRef]
- Zhang, L.X.; Zeng, G.P.; Wei, J.J. Adaptive region-segmentation multi-focus image fusion based on differential evolution. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1954010. [Google Scholar] [CrossRef]
- Li, M.; Cai, W.; Tan, Z. A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recognit. Lett. 2006, 27, 1948–1956. [Google Scholar] [CrossRef]
- Ranchin, T.; Wald, L. The wavelet transform for the analysis of remotely sensed images. Int. J. Remote Sens. 1993, 14, 615–619. [Google Scholar] [CrossRef]
- Shi, Q.; Li, J.W.; Yang, W.; Zeng, H.C.; Zhang, H.J. Multi-aspect SAR image fusion method based on wavelet transform. J. Beijing Univ. Aeronaut. Astronaut. 2017, 43, 2135–2142. [Google Scholar]
- Cunha, A.; Zhou, J.P.; Do, M.N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications. IEEE Trans. Image Process. 2006, 15, 3089–3101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Zhou, F.Q.; Tan, H.S.; Chen, Y.Z.; Zou, W.X. Multi-focus image fusion based on nonsubsampled contourlet transform and residual removal. Signal Process. 2021, 184, 108062. [Google Scholar] [CrossRef]
- Easley, G.; Labate, D.; Lim, W.Q. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 2008, 25, 25–46. [Google Scholar] [CrossRef]
- Yang, B.; Li, S.T. Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 2010, 59, 884–892. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Li, S.; Wang, B. Multi-scale weighted gradient-based fusion for multi-focus images. Inf. Fusion 2014, 20, 60–72. [Google Scholar] [CrossRef]
- Liu, Z.D.; Chai, Y.; Yin, H.P.; Zhou, J.Y.; Zhu, Z.Q. A novel multi-focus image fusion approach based on image decomposition. Inf. Fusion 2017, 35, 102–116. [Google Scholar] [CrossRef]
- An, D.X.; Huang, J.N.; Chen, L.P.; Feng, D.; Zhou, Z.M. A NSST-Based Fusion Method for Airborne Dual-Frequency, High-Spatial-Resolution SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4362–4370. [Google Scholar]
- Liu, Y.; Chen, X.; Peng, H.; Wang, Z.F. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36, 191–207. [Google Scholar] [CrossRef]
- Du, C.B.; Gao, S.S. Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network. IEEE Access 2017, 5, 15750–15761. [Google Scholar] [CrossRef]
- Ma, B.; Zhu, Y.; Yin, X.; Ban, X.J.; Huang, H.Y.; Mukeshimana, M. Sesf-fuse: An unsupervised deep model for multi-focus image fusion. Neural Comput. Appl. 2021, 33, 5793–5804. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, B.C.; Bi, X.L.; Li, W.S. Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion. IEEE Trans. Image Process. 2021, 30, 163–175. [Google Scholar] [CrossRef]
- Ma, B.Y.; Yin, X.; Wu, D.; Shen, H.K.; Ban, X.J.; Wang, Y. End-to-end learning for simultaneously generating decision map and multi-focus image fusion result. Neurocomputing 2022, 470, 204–216. [Google Scholar] [CrossRef]
- He, K.M.; Sun, J.; Tang, X.O. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, Z.Y.; Fu, Y.Q.; Yi, Y.; He, X.H. Fast image fusion based on sum of modified Laplacian. Comput. Eng. Appl. 2015, 5, 193–197. [Google Scholar]
- Li, J.X.; Chen, L.P.; An, D.X.; Feng, D.; Song, Y.P. CSAR Multilayer Focusing Imaging Method. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Li, J.F.; Galdran, A. Multi-focus Microscopic Image Fusion Algorithm Based on Sparse Representation and Pulse Coupled Neural Network. Acta Microsc. 2020, 29, 1816–1823. [Google Scholar]
- Piella, G.; Heijmans, H. A new quality metric for image fusion. In Proceedings of the 2003 International Conference on Image Processing (Cat. No.03CH37429), Barcelona, Spain, 14–17 September 2003. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.H.; Zhang, D.L.; Yan, P.F. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313–315. [Google Scholar] [CrossRef]
- Xydeas, C.S.; Petrovic, V. Objective image fusion performance measure. Electron. Lett. 2000, 36, 308–309. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Carrier frequency | L band |
The velocity of the platform | 52 m/s |
The flight radius of the platform | 2000 m |
The altitude of the platform | 2000 m |
Method | ACE | SMI | SSIM | ENL | Time (s) | |
---|---|---|---|---|---|---|
Our | 0.4979 | 0.0064 | 4.8886 | 0.8748 | 2.7061 | 51 |
AG | 0.5243 | 0.0050 | 5.5499 | 0.8894 | 2.7686 | 647 |
NSST | 0.3652 | - | - | - | - | 1726 |
PCNN | 0.3291 | - | - | - | - | 9186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, L.; An, D.; Feng, D.; Song, Y. A Novel Method for CSAR Multi-Focus Image Fusion. Remote Sens. 2024, 16, 2797. https://doi.org/10.3390/rs16152797
Li J, Chen L, An D, Feng D, Song Y. A Novel Method for CSAR Multi-Focus Image Fusion. Remote Sensing. 2024; 16(15):2797. https://doi.org/10.3390/rs16152797
Chicago/Turabian StyleLi, Jinxing, Leping Chen, Daoxiang An, Dong Feng, and Yongping Song. 2024. "A Novel Method for CSAR Multi-Focus Image Fusion" Remote Sensing 16, no. 15: 2797. https://doi.org/10.3390/rs16152797
APA StyleLi, J., Chen, L., An, D., Feng, D., & Song, Y. (2024). A Novel Method for CSAR Multi-Focus Image Fusion. Remote Sensing, 16(15), 2797. https://doi.org/10.3390/rs16152797