Digital Mapping and Scenario Prediction of Soil Salinity in Coastal Lands Based on Multi-Source Data Combined with Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Soil Sample Analysis
2.3. Data
2.4. Spatial Distribution Prediction Methods
2.4.1. EBK Regression
2.4.2. Random Forest
2.4.3. CatBoost
2.4.4. Model Train and Test
2.5. Scenario Simulation
2.6. Digital Soil Mapping
3. Results
3.1. Descriptive Statistics of EC1:5
3.2. Pearson Correlation and Variable Importance
3.3. Evaluation and Comparison of Model Performance
3.4. Mapping Soil Salinity
3.5. SHAP Values
3.6. Scenario Simulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Mueller, V. Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Change 2018, 8, 981–985. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). World Map of Salt-Affected Soils Launched at Virtual Conference. 2021. Available online: https://www.fao.org/newsroom/detail/salt-affected-soils-map-symposium/en (accessed on 7 March 2023).
- Hassan, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.J.; Yang, J.S.; Zhou, P.; Zhou, P. Spatial variability of soil salinity in characteristic field of the Yellow River Delta. Trans. Chin. Soc. Agric. Eng. 2006, 22, 61–66. [Google Scholar]
- Mohammadifar, A.; Gholami, H.; Golzar, S. Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory. Sci. Rep. 2022, 12, 15167. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yang, X.; Yang, M.; Sun, D.; Zhu, W.; Zhu, D.; Wang, J. Mapping soil salinity using a combination of vegetation index time series and single-temporal remote sensing images in the Yellow River Delta, China. Catena 2023, 231, 107313. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Wang, Z.; Zhao, G. Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China. Ecol. Indic. 2023, 148, 110087. [Google Scholar] [CrossRef]
- Jiang, H.; Shu, H. Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China. Earth Sci. Inform. 2019, 12, 43–56. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Fan, Y.; Han, B.; Chen, S.; Yang, W. Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI–SI feature space models with Landsat images. Environ. Earth Sci. 2019, 78, 308. [Google Scholar] [CrossRef]
- Lu, Q.K.; Tian, S.; Wei, L.F. Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning. Sci. Total Environ. 2023, 856, 159171. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, S.H.; Chen, Y.H.; Shao, S.S.; Wu, J.T.; Fan, M.M.; Chen, F.R.; Gao, H. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. J. Clean. Prod. 2020, 273, 122858. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nguyen, C.T.; Zhang, J.; Liang, S.; Bui, X.T.; Hoang, N.B. A low-cost approach for soil moisture prediction using multi-sensor data and machine learning algorithm. Sci. Total Environ. 2022, 833, 155066. [Google Scholar] [CrossRef] [PubMed]
- Agyeman, P.C.; Kingsley, J.; Kebonye, N.M.; Khosravi, V.; Borůvka, L.; Vašát, R. Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression kriging. Environ. Pollut. 2023, 316, 120697. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yang, Y.; Li, R.; Liao, X.; Li, Y. Cadmium accumulation in tropical island paddy soils: From environment and health risk assessment to model prediction. J. Hazar. Mater. 2024, 465, 133212. [Google Scholar] [CrossRef] [PubMed]
- Ngu, N.H.; Thanh, N.N.; Duc, T.T.; Non, D.Q.; An, N.T.T.; Chotpantarat, S. Active learning-based random forest algorithm used for soil texture classification mapping in Central Vietnam. Catena 2024, 234, 107629. [Google Scholar] [CrossRef]
- Siqueira, R.G.; Moquedace, C.M.; Fernandes-Filho, E.I.; Schaefer, C.E.G.R.; Francelino, M.R.; Sacramento, I.F.; Michel, R.F.M. Modelling and prediction of major soil chemical properties with Random Forest: Machine learning as tool to understand soil-environment relationships in Antarctica. Catena 2024, 235, 107677. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Nguyen, T.T.T.; Le, N.N.; Ha, N.T.; Xia, J.; Takeuchi, W.; Pham, T.D. Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. GISci. Remote Sens. 2021, 58, 68–87. [Google Scholar] [CrossRef]
- Tran, D.A.; Tsujimura, M.; Ha, N.T.; Nguyen, V.T.; Binh, D.V.; Dang, T.D.; Doan, Q.; Bui, D.T.; Ngoc, T.A.; Phu, L.V.; et al. Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecol. Indic. 2021, 127, 107790. [Google Scholar] [CrossRef]
- Huang, G.A.; Wu, L.F.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. J. Hydrol. 2019, 574, 1029–1041. [Google Scholar] [CrossRef]
- Jabeur, S.B.; Gharib, C.; Mefteh-Wali, S.; Arf, W.B. CatBoost model and artificial intelligence techniques for corporate failure prediction. Technol. Forecast. Soc. Chang. 2021, 166, 120658. [Google Scholar] [CrossRef]
- Xiang, W.; Xu, P.; Fang, J.; Zhao, Q.; Gu, Z.; Zhang, Q. Multi-dimensional data-based medium- and long-term power-load forecasting using double-layer CatBoost. Energy Rep. 2022, 8, 8511–8522. [Google Scholar] [CrossRef]
- Wei, X.; Rao, C.; Xiao, X.; Chen, L.; Goh, M. Risk assessment of cardiovascular disease based on SOLSSA-CatBoost model. Expert Syst. Appl. 2023, 219, 119648. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, H.; Lai, J.; Wang, C.; Liu, Z.; Sun, Z.; Hou, R. New Approach of High-quality Agricultural Development in the Yellow River Delta. Bull. Chin. Acad. Sci. 2020, 35, 145–153. [Google Scholar] [CrossRef]
- Li, G. A Summary on Soil Salinization of Yellow River Delta. Anhui Agri. Sci. Bull. 2020, 26, 02–03. [Google Scholar] [CrossRef]
- Tian, S.Z.; Ning, T.Y.; Wang, Y.; Li, H.; Zhong, W.; Li, Z. Effect of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field. Chin. J. Appl. Ecol. 2010, 21, 373–378. [Google Scholar] [CrossRef]
- Xu, G.X.; Wang, Z.F.; Gao, M.; Tian, D.; Huang, R.; Liu, J.; Li, J.C. Effects of straw and biochar return on soil aggregate and carbon sequestration. Chin. J. Environ. Sci. 2018, 39, 355–362. [Google Scholar] [CrossRef]
- Guo, K.; He, G.; Wang, C.; Zhang, H.; Yan, X.; Wang, S.; Kong, Y.; Zhou, G.; Hu, R. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric. Ecosyst. Environ. 2021, 312, 107356. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y. Spatial distribution and source identification of potentially toxic elements in Yellow River Delta soils, China: An interpretable machine-learning approach. Sci. Total Environ. 2024, 912, 169092. [Google Scholar] [CrossRef]
- Ning, Z.; Li, D.; Chen, C.; Xie, C.; Chen, G.; Xie, T.; Wang, Q.; Bai, J.; Cui, B. The importance of structural and functional characteristics of tidal channels to smooth cordgrass invasion in the Yellow River Delta, China: Implications for coastal wetland management. J. Environ. Manag. 2023, 342, 118297. [Google Scholar] [CrossRef]
- Ministry of Natural Resources of the People’s Republic of China. Soil Determination of pH—Potentiometry (HJ 962-2018). 2019. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201808/t20180815_451430.shtml (accessed on 13 April 2023).
- GBW07986; Certified Reference Material for the Chemical Composition of Soil. Institute of Geophysical and Geochemical Exploration: Langfang, China, 2021.
- Xu, X.L. China Annual Vegetation Index (NDVI) Spatial Distribution Dataset. Resource and Environmental Science Data Registration and Publishing System (RESDRPS). 2018. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=49 (accessed on 6 March 2023). [CrossRef]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.; Yan, C.; Wu, S. Multi period Land Use Remote Sensing Monitoring Dataset in China. RESDRPS. 2018. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=54 (accessed on 6 March 2023). [CrossRef]
- Xu, X.L. Annual Spatial Interpolation Dataset of Meteorological Elements in China. RESDRPS. 2022. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=96 (accessed on 7 March 2023). [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China, National Catalogue Service for Geographic Information. 1:1 Million Basic Geographic Information Data. 2021. Available online: https://www.webmap.cn/main.do?method=index (accessed on 6 March 2023).
- Copernicus Marine Service (CMS). Global Ocean 1/12° Physics Analysis and Forecast Updated Daily. 2023. Available online: https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFORECAST_PHY_001_024/description (accessed on 9 March 2023).
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100 (Version v100) [Data Set]. Zenodo. 2021. Available online: https://worldcover2020.esa.int/download (accessed on 8 March 2023).
- Zhang, F.; Li, X.; Zhou, X.; Chan, N.W.; Tan, M.L.; Kung, H.T.; Shi, J. Retrieval of soil salinity based on multi-source remote sensing data and differential transformation technology. Int. J. Remote Sens. 2023, 44, 1348–1368. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, H.; Liu, L.; Huang, Z.; Zhao, L. Spatial prediction and influencing factors identification of potential toxic element contamination in soil of different karst landform regions using integration model. Chemosphere 2023, 327, 138404. [Google Scholar] [CrossRef] [PubMed]
- Senoro, D.B.; de Jesus, K.L.M.; Mendoza, L.C.; Apostol, E.M.D.; Escalona, K.S.; Chan, E.B. Groundwater Quality Monitoring Using In-Situ Measurements and Hybrid Machine Learning with Empirical Bayesian Kriging Interpolation Method. Appl. Sci. 2022, 12, 132. [Google Scholar] [CrossRef]
- Aldegunde, J.A.Á.; Sánchez, A.F.; Saba, M.; Bolaños, E.Q.; Palenque, J.Ú. Analysis of PM2.5 and Meteorological Variables Using Enhanced Geospatial Techniques in Developing Countries: A Case Study of Cartagena de Indias City (Colombia). Atmosphere 2022, 13, 506. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Zhang, C., Ma, Y., Eds.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Cao, J.; Guo, Z.H.; Ran, H.Z.; Xu, R.; Anaman, R.; Liang, H.Z. Risk source identification and diffusion trends of metal(loid)s in stream sediments from an abandoned arsenic-containing mine. Environ. Pollut. 2023, 329, 121713. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Y.; Wang, L.; Sun, H.; Liu, C. Prediction of microplastic abundance in surface water of the ocean and influencing factors based on ensemble learning. Environ. Pollut. 2023, 331, 121834. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30, pp. 4768–4777. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.J.; Yang, J.S.; Zou, P.; Liu, G.; Yu, S. Quantitative Evaluation of the Field Soil Salinity and Its Spatial Distribution Based on Electromagnetic Induction Instruments. Sci. Agric. Sin. 2008, 41, 460–469. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Lian, X.; Xiao, H.; Wang, L.; He, H. Measurement of Soil Electric Conductivity and Relationship Between Soluble Salt Content and Electrical Conductivity in Tianjin Coastal Area. Tianjin Agric. Sci. 2011, 17, 18–21. [Google Scholar] [CrossRef]
- Li, R.; Wang, F.; Qin, F.; Lou, F.; Wu, D. Studies on the Best Curve Equation Between the Total Salts and the Electrical Conductivity of the Coastal Saline Soil. J. Agric. 2015, 25, 59–62. [Google Scholar] [CrossRef]
- Rao, D.L.N.; Pathak, H. Ameliorative influence of organic matter on biological activity of salt-affected soils. Arid. Soil Res. Rehab. 1996, 10, 311–319. [Google Scholar] [CrossRef]
- Fan, X.; Weng, Y.; Tao, J. Towards decadal soil salinity mapping using Landsat time series data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 32–41. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhang, J.; Shang, X.; Chen, Y.; Feng, Y.; Tian, B. Soil Salinity Inversion in Yellow River Delta by Regularized Extreme Learning Machine Based on ICOA. Remote Sens. 2024, 16, 1565. [Google Scholar] [CrossRef]
- Mantena, S.; Mahammood, V.; Rao, K.N. Prediction of soil salinity in the Upputeru river estuary catchment, India, using machine learning techniques. Environ. Monit. Assess. 2023, 195, 1006. [Google Scholar] [CrossRef] [PubMed]
- Manasa, M.R.K.; Katukuri, N.R.; Nair, S.S.D.; Haojie, Y.; Yang, Z.; Guo, R. Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil. J. Environ. Manag. 2020, 269, 110737. [Google Scholar] [CrossRef]
Data | Variables | Description |
---|---|---|
Meteorological data | Evaporation (EVP) | A 1 km grid based on daily observation data of meteorological element stations from more than 2400 stations in China in 2020. The spatial resolution of this variable is 1 × 1 km. |
Precipitation (PRE) | ||
Temperature (TEM) | ||
Remote data | NDVI | A 1 km grid based on SPOT/VEGETATION PROBA-V 300 M PRODUCTS vegetation index data. The spatial resolution of this variable is 1 × 1 km. |
DEM | SRTMDEMUTM 90 M resolution digital elevation data product. The spatial resolution of this variable is 90 × 90 m. | |
Sea data | Distance to seawater salinity line (DSWS22) | Seawater salinity grid map for June 2020 with a spatial resolution of 0.083° × 0.083°. Distance to where the seawater salinity is 22 g/kg. The spatial resolution of this variable is 10 × 10 km. |
Coastline 1980 | The 1980 coastline was derived from a land use dataset created through manual visual interpretation, utilizing Landsat remote sensing images from the United States as the primary source of information. The data feature the European distance from the sampling point to the 1980 coastline. The spatial resolution of this variable is 600 × 600 m. | |
Environmental data | Land cover type | The ESA WorldCover 10 m 2020 product provides a global land cover map for 2020 at 10 m resolution based on Sentinel-1 and Sentinel-2 data. The spatial resolution of this variable is 10 × 10 m. |
Degree of land use change (DLUC) | A 1 km grid based on Landsat remote sensing images. The spatial resolution of this variable is 600 × 600 m. | |
Soil type | It is digitally generated according to the “1:1 million Soil Map of the People’s Republic of China” compiled and published by the National Soil Census Office in 1995. The spatial resolution of this variable is 1 × 1 km. | |
Soil data | Sand content | The spatial distribution data of soil texture in China is compiled based on the 1:1 million soil type map and the soil profile data obtained from the second soil census. The spatial resolution of this variable is 600 × 600 m. |
Clay content | ||
Silt content | ||
EC, pH, SOC, K, Ca, Na, and Mg | Measured in the laboratory. |
EC1:5 (us/cm) | Number | Min. | Median | Mean | Max. | SD | CV% |
---|---|---|---|---|---|---|---|
0–1 | 118 | 0.0333 | 0.2029 | 0.3090 | 0.9990 | 0.2498 | 80.84 |
1–2 | 16 | 1.0610 | 1.7718 | 1.5700 | 1.9935 | 0.3535 | 22.52% |
2–4 | 18 | 2.0950 | 2.9197 | 2.8151 | 3.6720 | 0.5366 | 19.06% |
4–6 | 17 | 4.0925 | 4.8900 | 4.9820 | 5.9000 | 0.5713 | 11.47% |
>6 | 32 | 6.0500 | 9.7800 | 11.1654 | 22.3000 | 4.7179 | 42.25% |
Total | 201 | 0.0334 | 0.6541 | 2.7574 | 22.3000 | 4.3507 | 157.78 |
Factors | Pearson Correlation | VIF1 | VIF2 | Factors | Pearson Correlation | VIF1 | VIF2 |
---|---|---|---|---|---|---|---|
pH | −0.07 | 1.35 | 1.34 | EVP-PRE | −0.19 | 132.77 | \ |
SOC | −0.42 ** | 2.11 | 2.10 | EVP/PRE | −0.16 * | 98.69 | 4.90 |
K | −0.24 ** | 2.05 | 2.04 | coastline1980 | −0.39 ** | 7.24 | 6.05 |
Ca | −0.05 | 2.35 | 2.32 | DSWS22 | −0.44 ** | 8.73 | 5.83 |
Na | 0.53 ** | 1.93 | 1.93 | Clay | −0.30 ** | \ | \ |
Mg | −0.01 | 2.81 | 2.80 | Slit | −0.34 ** | 129.03 | 1.48 |
NDVI | −0.62 ** | 2.97 | 2.71 | Sand | −0.32 ** | 131.55 | \ |
DEM | −0.36 ** | 3.11 | 3.08 | DLUC | 0.50 ** | 2.91 | 2.91 |
TEM | 0.10 | 13.07 | 5.26 |
a | b | c | d | ||||
---|---|---|---|---|---|---|---|
Proportion | Proportion | PR | Proportion | PR | Proportion | PR | |
>2 ds/m | 29.39% | 27.19% | 2.20% | 24.90% | 2.25% | 23.71% | 1.89% |
>4 ds/m | 18.10% | 11.45% | 6.65% | 6.66% | 5.72% | 4.66% | 4.48% |
>6 ds/m | 9.46% | 3.91% | 5.55% | 1.32% | 4.07% | 0.23% | 3.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Li, Y. Digital Mapping and Scenario Prediction of Soil Salinity in Coastal Lands Based on Multi-Source Data Combined with Machine Learning Algorithms. Remote Sens. 2024, 16, 2681. https://doi.org/10.3390/rs16142681
Zhou M, Li Y. Digital Mapping and Scenario Prediction of Soil Salinity in Coastal Lands Based on Multi-Source Data Combined with Machine Learning Algorithms. Remote Sensing. 2024; 16(14):2681. https://doi.org/10.3390/rs16142681
Chicago/Turabian StyleZhou, Mengge, and Yonghua Li. 2024. "Digital Mapping and Scenario Prediction of Soil Salinity in Coastal Lands Based on Multi-Source Data Combined with Machine Learning Algorithms" Remote Sensing 16, no. 14: 2681. https://doi.org/10.3390/rs16142681
APA StyleZhou, M., & Li, Y. (2024). Digital Mapping and Scenario Prediction of Soil Salinity in Coastal Lands Based on Multi-Source Data Combined with Machine Learning Algorithms. Remote Sensing, 16(14), 2681. https://doi.org/10.3390/rs16142681