Detection of Cliff Top Erosion Drivers through Machine Learning Algorithms between Portonovo and Trave Cliffs (Ancona, Italy)
Abstract
:1. Introduction
Setting
- -
- Sector “1”, Portonovo: cliffs are composed by marls of the Schlier Fm.;
- -
- Sector “2”, Mezzavalle: cliffs are characterised by landslide deposits;
- -
- Sector “3”, Trave: cliffs constituted by tectonised flyschoid formations.
2. Materials and Methods
2.1. Fieldwork
2.2. Data Analyses and Surveys
2.3. Parameters Extraction: Cliff Top Retreat Analysis and Transect Identification
- In order to obtain the baseline, the shoreline has been used as the reference line, considering a 100 m buffer. The 2022 orthophoto was used as base map and the shoreline was identified by the colour changing between the sand and the sea.
- By using the option “Cast Transect”, a series of transects is generated, starting from this baseline and crossing the two delineated cliff edges, computing the linear distance between them. Then, we have defined a distance between each transect of 10 m, for a total of 310 transects, and a smoothing factor of 100 was used to avoid any crosscutting of these lines, thus keeping each transect as perpendicular as possible to the coastline. Furthermore, using the option “Cast Direction”, it was possible to indicate landward and seaward directions.
- The intersections between transects and shoreline were created and, using the option “Calculate Change Statistics”, Net Shoreline Movement (NSM, the total movement measured in meters) and the End Point Rate (EPR, the rate of movement calculated in meters per years) along these transects were calculated, together with Confidence of End Point Rate (ECI or EPRunc in newer versions of DSAS), an index which takes into account the uncertainty of lines (accuracy error) as a factor for calculating the EPR confidence.
2.4. Machine Learning Analysis: Parameters
Drivers | Description | Mapping Method | Data Type |
---|---|---|---|
Cliff height | The height of the cliff above sea level. It can influence slope stability [36,73] | Data were extracted from 2022 DSM sampling of the highest point of the active cliff | Number |
Cliff slope | The slope of the active cliff wall. It can affect the frictional resistances | It was manually computed on the extracted profile in a GIS environment, starting from the highest point of the active cliff down to the cliff base | Number |
Aspect | The exposure of the cliff wall might be changing the erosion rate through differential weathering rates and different exposure to winds [36] | It was automatically computed in a GIS environment. The aspect was reported measured in degrees clockwise, with respect to the north | Number |
UCS (MPa) | The uniaxial compressive strength measured at the cliff base is related to cliff retreat [54,74] | It was collected during the fieldwork using a pocket penetrometer and a Schmidt hammer | Number |
GSI | Classification of the rockmass, which takes into account the amount and quality of discontinuities controlling cliff erosion [28] | It was obtained during the fieldwork using the most updated versions of the classification for complex formation [58] | Number |
Cliff top retreat | Values of the cliff top retreat computed in the period 1978–2022, target value for the ML analysis | It was computed in a GIS environment using the tool DSAS of USGS | Number |
Beach and talus width | The corridor that separates the cliff base from the sea. This parameter determines if the cliff wall might be hit by waves [75] | It was manually measured on a GIS environment for every transect, starting from the cliff base to the shoreline | Number |
Cliff base slope | The slope of the space between the sea and the cliff base. It can affect wave run-up [76] | It was manually measured on a GIS environment for every transect starting from the cliff base to the shoreline | Number |
Boulders at cliff base | Boulders at the base of the cliff can reduce the erosive power of waves, in fact they are used even as revetment [77] | It was manually added for each transect according to the 2022 orthophoto | Binary (0 absence, 1 presence) |
Beach retreat (GIZC) | Beach retreat between 2008–2019 computed by Regione Marche in the project Gestione Integrata Zone Costiere (GIZC) | The values registered in the GIZC were reported by a buffer in the shoreline, along with the values associated with each transect | Number |
Vegetation at cliff top | Trees and their roots in the upper part of the cliff can give more cohesion to soil or remove it when they are uprooted | It was manually added for each transect using the 2022 orthophoto | Binary (0 absence, 1 presence) |
Angle between shoreline and NE storms (Bora) | The angle between the lines perpendicular (normal) to the shoreline and the wave front [78]. The direction of Bora wave front was chosen according to RON data * | It was manually measured on a GIS environment for every transect | Number |
Angle between shoreline and SE storms (Scirocco) | The angle between the lines perpendicular (normal) to the shoreline and the wave front [78]. The direction of Scirocco wave front was chosen according to RON data * | It was manually measured on a GIS environment for every transect | Number |
2.5. Application of Machine Learning Models
2.6. Slope Stability Numerical Modeling
3. Results
3.1. Fieldwork
3.2. Cliff Top Retreat Analysis
3.3. Machine Learning
3.4. Slope Stability
4. Discussion
5. Conclusions
- Cliff top retreat calculations spanning the period from 1978 to 2022 reaffirm the findings of previous research [48], indicating notably higher values of NSM in the Trave sector.
- The Mean Decrease in Impurity (MDI) analysis, conducted utilising Random Forest (RF) and XGBoost (XGB) ML algorithms, identified cliff height as the most significant parameter for cliff top erosion.
- Limit Equilibrium Method (LEM) modeling confirms the correlation between FS and cliff height.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The Coasts of Our World: Ecological, Economic and Social Importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Young, A.P.; Carilli, J.E. Global Distribution of Coastal Cliffs. Earth Surf. Process. Landforms 2019, 44, 1309–1316. [Google Scholar] [CrossRef]
- Naylor, L.A.; Stephenson, W.J.; Trenhaile, A.S. Rock Coast Geomorphology: Recent Advances and Future Research Directions. Geomorphology 2010, 114, 3–11. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Paulik, R.; Dickson, M.E. Subaerial Weathering versus Wave Processes in Shore Platform Development: Reappraising the Old Hat Island Evidence. Earth Surf. Process. Landforms 2011, 36, 686–694. [Google Scholar] [CrossRef]
- Sunamura, T. Rocky Coast Processes: With Special Reference to the Recession of Soft Rock Cliffs. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 2015, 91, 481–500. [Google Scholar] [CrossRef] [PubMed]
- Poate, T.; Masselink, G.; Austin, M.J.; Dickson, M.; McCall, R. The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms. J. Geophys. Res. Earth Surf. 2018, 123, 91–123. [Google Scholar] [CrossRef]
- Moses, C.; Robinson, D. Chalk Coast Dynamics: Implications for Understanding Rock Coast Evolution. Earth-Sci. Rev. 2011, 109, 63–73. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Milkins, J. The Formation of Beaches on Shore Platforms in Microtidal Environments. Earth Surf. Process. Landforms 2015, 40, 34–46. [Google Scholar] [CrossRef]
- Sunamura, T. The Elevation of Shore Platforms: A Laboratory Approach to the Unsolved Problem. J. Geol. 1991, 99, 761–766. [Google Scholar] [CrossRef]
- Robinson, A.H.W. Erosion and Accretion along Part of the Suffolk Coast of East Anglia, England. Mar. Geol. 1980, 37, 133–146. [Google Scholar] [CrossRef]
- Troiani, F.; Martino, S.; Marmoni, G.M.; Menichetti, M.; Torre, D.; Iacobucci, G.; Piacentini, D. Integrated Field Surveying and Land Surface Quantitative Analysis to Assess Landslide Proneness in the Conero Promontory Rocky Coast (Italy). Appl. Sci. 2020, 14, 4793. [Google Scholar] [CrossRef]
- Naylor, L.A.; Stephenson, W.J. On the Role of Discontinuities in Mediating Shore Platform Erosion. Geomorphology 2010, 114, 89–100. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Lato, M.; Gaib, S. Spatio-Temporal Characterization of Slope Damage: Insights from the Ten Mile Slide, British Columbia, Canada. Landslides 2020, 17, 1037–1049. [Google Scholar] [CrossRef]
- Marmoni, G.M.; Martino, S.; Censi, M.; Menichetti, M.; Piacentini, D.; Scarascia Mugnozza, G.; Torre, D.; Troiani, F. Transition from Rock Mass Creep to Progressive Failure for Rockslide Initiation at Mt. Conero (Italy). Geomorphology 2023, 437, 108750. [Google Scholar] [CrossRef]
- Rosser, N.J.; Brain, M.J.; Petley, D.N.; Lim, M.; Norman, E.C. Coastline Retreat via Progressive Failure of Rocky Coastal Cliffs. Geology 2013, 41, 939–942. [Google Scholar] [CrossRef]
- Caputo, T.; Marino, E.; Matano, F.; Somma, R.; Troise, C.; De Natale, G. Terrestrial Laser Scanning (TLS) Data for the Analysis of Coastal Tuff Cliff Retreat: Application to Coroglio Cliff, Naples, Italy. Ann. Geophys. Geophys. 2018, 61, SE110. [Google Scholar] [CrossRef]
- Esposito, G.; Salvini, R.; Matano, F.; Sacchi, M.; Danzi, M.; Somma, R.; Troise, C. Multitemporal Monitoring of a Coastal Landslide through SfM-Derived Point Cloud Comparison. Photogramm. Rec. 2017, 32, 459–479. [Google Scholar] [CrossRef]
- Matano, F.; Pignalosa, A.; Marino, E.; Esposito, G.; Caccavale, M.; Caputo, T.; Sacchi, M.; Somma, R.; Troise, C.; De Natale, G. Laser Scanning Application for Geostructural Analysis of Tuffaceous Coastal Cliffs: The Case of Punta Epitaffio, Pozzuoli Bay, Italy. Eur. J. Remote Sens. 2015, 48, 615–637. [Google Scholar] [CrossRef]
- Loiotine, L.; Andriani, G.F.; Jaboyedoff, M.; Parise, M.; Derron, M.H. Comparison of Remote Sensing Techniques for Geostructural Analysis and Cliff Monitoring in Coastal Areas of High Tourist Attraction: The Case Study of Polignano a Mare (Southern Italy). Remote Sens. 2021, 13, 5045. [Google Scholar] [CrossRef]
- Francioni, M.; Coggan, J.; Eyre, M.; Stead, D. A Combined Field/Remote Sensing Approach for Characterizing Landslide Risk in Coastal Areas. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 79–95. [Google Scholar] [CrossRef]
- Gómez-Pazo, A.; Pérez-Alberti, A.; Trenhaile, A. Tracking the Behavior of Rocky Coastal Cliffs in Northwestern Spain. Environ. Earth Sci. 2021, 80, 1–18. [Google Scholar] [CrossRef]
- Prémaillon, M.; Dewez, T.J.B.; Regard, V.; Rosser, N.J.; Carretier, S.; Guillen, L. Conceptual Model of Fracture-Limited Sea Cliff Erosion: Erosion of the Seaward Tilted Flyschs of Socoa, Basque Country, France. Earth Surf. Process. Landforms 2021, 46, 2690–2709. [Google Scholar] [CrossRef]
- Young, A.P.; Guza, R.T.; Matsumoto, H.; Merrifield, M.A.; O’Reilly, W.C.; Swirad, Z.M. Three Years of Weekly Observations of Coastal Cliff Erosion by Waves and Rainfall. Geomorphology 2021, 375, 107545. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Torre, D.; Menichetti, M. Land-Surface Quantitative Analysis to Investigate the Spatial Distribution of Gravitational Landforms along Rocky Coasts. Remote Sens. 2021, 13, 5012. [Google Scholar] [CrossRef]
- Jaud, M.; Letortu, P.; Théry, C.; Grandjean, P.; Costa, S.; Maquaire, O.; Davidson, R.; Le Dantec, N. UAV Survey of a Coastal Cliff Face—Selection of the Best Imaging Angle. Measurement 2019, 139, 10–20. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Rodriguez-Delgado, C.; Medina, L.; Fernandez-Ruiz, J.; Rodriguez-Ortiz, J.M.; Iglesias, G. A Combined Approach to Cliff Characterization: Cliff Stability Index. Mar. Geol. 2022, 444, 106706. [Google Scholar] [CrossRef]
- Lollino, P.; Pagliarulo, R.; Trizzino, R.; Santaloia, F.; Pisano, L.; Zumpano, V.; Perrotti, M.; Fazio, N.L. Multi-Scale Approach to Analyse the Evolution of Soft Rock Coastal Cliffs and Role of Controlling Factors: A Case Study in South-Eastern Italy. Geomat. Nat. Hazards Risk 2021, 12, 1058–1081. [Google Scholar] [CrossRef]
- Earlie, C.S.; Masselink, G.; Russell, P.E.; Shail, R.K. Application of Airborne LiDAR to Investigate Rates of Recession in Rocky Coast Environments. J. Coast. Conserv. 2015, 19, 831–845. [Google Scholar] [CrossRef]
- Torre, D.; Galve, J.P.; Reyes-Carmona, C.; Alfonso-Jorde, D.; Ballesteros, D.; Menichetti, M.; Piacentini, D.; Troiani, F.; Azañón, J.M. Geomorphological Assessment as Basic Complement of InSAR Analysis for Landslide Processes Understanding. Landslides 2024, 21, 1273–1292. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A Multidisciplinary Approach for Rock Spreading and Block Sliding Investigation in the North-Western Coast of Malta. Landslides 2013, 10, 611–622. [Google Scholar] [CrossRef]
- Di Luccio, D.; Aucelli, P.P.C.; Di Paola, G.; Pennetta, M.; Berti, M.; Budillon, G.; Florio, A.; Benassai, G. An Integrated Approach for Coastal Cliff Susceptibility: The Case Study of Procida Island (Southern Italy). Sci. Total Environ. 2023, 855, 158759. [Google Scholar] [CrossRef] [PubMed]
- Del Río, L.; Gracia, F.J. Erosion Risk Assessment of Active Coastal Cliffs in Temperate Environments. Geomorphology 2009, 112, 82–95. [Google Scholar] [CrossRef]
- Anfuso, G.; Gracia, F.J.; Battocletti, G. Determination of Cliffed Coastline Sensitivity and Associated Risk for Human Structures: A Methodological Approach. J. Coast. Res. 2013, 29, 1292–1296. [Google Scholar] [CrossRef]
- Tursi, M.F.; Anfuso, G.; Matano, F.; Mattei, G.; Aucelli, P.P.C. A Methodological Tool to Assess Erosion Susceptibility of High Coastal Sectors: Case Studies from Campania Region (Southern Italy). Water 2023, 15, 121. [Google Scholar] [CrossRef]
- Hapke, C.; Plant, N. Predicting Coastal Cliff Erosion Using a Bayesian Probabilistic Model. Mar. Geol. 2010, 278, 140–149. [Google Scholar] [CrossRef]
- Dickson, M.E.; Perry, G.L.W. Identifying the Controls on Coastal Cliff Landslides Using Machine-Learning Approaches. Environ. Model. Softw. 2016, 76, 117–127. [Google Scholar] [CrossRef]
- He, L.; Coggan, J.; Francioni, M.; Eyre, M. Maximizing Impacts of Remote Sensing Surveys in Slope Stability—A Novel Method to Incorporate Discontinuities into Machine Learning Landslide Prediction. ISPRS Int. J. Geo-Inf. 2021, 10, 232. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; Open-File Report 2018-1179; U.S. Geological Survey: Woods Hole, MA, USA, 2018. [Google Scholar]
- Apostolopoulos, D.N.; Nikolakopoulos, K.G. Identifying Sandy Sites under Erosion Regime along the Prefecture of Achaia, Using Remote Sensing Techniques. J. Appl. Remote Sens. 2023, 17, 22206. [Google Scholar] [CrossRef]
- Dey, M.; Jena, B.K. A Shoreline Change Detection (2012–2021) and Forecasting Using Digital Shoreline Analysis System (DSAS) Tool: A Case Study of Dahej Coast, Gulf of Khambhat, Gujarat, India. Indones. J. Geogr. 2021, 53, 295. [Google Scholar] [CrossRef]
- Chrisben Sam, S.; Gurugnanam, B. Coastal Transgression and Regression from 1980 to 2020 and Shoreline Forecasting for 2030 and 2040, Using DSAS along the Southern Coastal Tip of Peninsular India. Geod. Geodyn. 2022, 13, 585–594. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Stead, D.; Coggan, J. Numerical Modeling of Rock-Slope Instability. In Landslides: Types, Mechanisms and Modeling; Stead, D., Clague, J.J., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 144–158. ISBN 9781107002067. [Google Scholar]
- Cello, G.; Coppola, L. Modalità e Stili Deformativi Nell’area Anconetana. Stud. Geol. Camerti 1989, XI, 37–48. [Google Scholar]
- Coltorti, M.; Sarti, M. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50.000 “Foglio 293—Osimo”. Progetto CARG: ISPRA, Servizio Geologico d’Italia. 2011. Available online: https://www.isprambiente.gov.it/Media/carg/293_OSIMO/Foglio.html (accessed on 14 July 2024).
- Montanari, A.; Mainiero, M.; Coccioni, R.; Pignocchi, G. Catastrophic Landslide of Medieval Portonovo (Ancona, Italy). Geol. Soc. Am. Bull. 2016, 128, 1660–1678. [Google Scholar] [CrossRef]
- Fullin, N.; Duo, E.; Fabbri, S.; Francioni, M.; Ghirotti, M.; Ciavola, P. Quantitative Characterization of Coastal Cliff Retreat and Landslide Processes at Portonovo—Trave Cliffs (Conero, Ancona, Italy) Using Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 4120. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences, Special Report. Spec. Rep.-Natl. Res. Counc. Transp. Res. Board 1996, 247, 36–57. [Google Scholar]
- Bisci, C.; Cantalamessa, G.; de Marco, R.; Spagnoli, F.; Tramontana, M. Caratteri Oceanografici Dell’Adriatico Centro-Settentrionale e Della Costa Marchigiana. Stud. Costieri 2021, 30, 7–12. [Google Scholar]
- Acciarri, A.; Bisci, C.; Cantalamessa, G.; Cappucci, S.; Conti, M.; Di Pancrazio, G.; Spagnoli, F.; Valentini, E. Metrics for Short-Term Coastal Characterization, Protection and Planning Decisions of Sentina Natural Reserve, Italy. Ocean Coast. Manag. 2021, 201, 105472. [Google Scholar] [CrossRef]
- Grottoli, E.; Bertoni, D.; Ciavola, P.; Pozzebon, A. Short Term Displacements of Marked Pebbles in the Swash Zone: Focus on Particle Shape and Size. Mar. Geol. 2015, 367, 143–158. [Google Scholar] [CrossRef]
- Prémaillon, M.; Regard, V.; Dewez, T.J.B.; Auda, Y. GlobR2C2 (Global Recession Rates of Coastal Cliffs): A Global Relational Database to Investigate Coastal Rocky Cliff Erosion Rate Variations. Earth Surf. Dyn. 2018, 6, 651–668. [Google Scholar] [CrossRef]
- Budetta, P.; Galietta, G.; Santo, A. A Methodology for the Study of the Relation between Coastal Cliff Erosion and the Mechanical Strength of Soils and Rock Masses. Eng. Geol. 2000, 56, 243–256. [Google Scholar] [CrossRef]
- Barton, N. Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar]
- Hoek, E.; Marinos, P.G.; Marinos, V.P. Characterisation and Engineering Properties of Tectonically Undisturbed but Lithologically Varied Sedimentary Rock Masses. Int. J. Rock Mech. Min. Sci. 2005, 42, 277–285. [Google Scholar] [CrossRef]
- Marinos, P.V. New Proposed Gsi Classification Charts for Weak or Complex Rock Masses. Bull. Geol. Soc. Greece 2017, 43, 1248. [Google Scholar] [CrossRef]
- Duo, E.; Fabbri, S.; Grottoli, E.; Ciavola, P. Uncertainty of Drone-Derived DEMs and Significance of Detected Morphodynamics in Artificially Scraped Dunes. Remote Sens. 2021, 13, 1823. [Google Scholar] [CrossRef]
- Gindraux, S.; Boesch, R.; Farinotti, D. Accuracy Assessment of Digital Surface Models from Unmanned Aerial Vehicles’ Imagery on Glaciers. Remote Sens. 2017, 9, 186. [Google Scholar] [CrossRef]
- Brunetta, R.; Duo, E.; Ciavola, P. Evaluating Short-Term Tidal Flat Evolution Through UAV Surveys: A Case Study in the Po Delta (Italy). Remote Sens. 2021, 13, 2322. [Google Scholar] [CrossRef]
- Fabbri, S.; Grottoli, E.; Armaroli, C.; Ciavola, P. Using High-Spatial Resolution UAV-Derived Data to Evaluate Vegetation and Geomorphological Changes on a Dune Field Involved in a Restoration Endeavour. Remote Sens. 2021, 13, 1987. [Google Scholar] [CrossRef]
- Talavera, L.; Benavente, J.; Del Río, L. UAS Identify and Monitor Unusual Small-Scale Rhythmic Features in the Bay of Cádiz (Spain). Remote Sens. 2021, 13, 1188. [Google Scholar] [CrossRef]
- Brooks, S.M.; Spencer, T.; Boreham, S. Deriving Mechanisms and Thresholds for Cliff Retreat in Soft-Rock Cliffs under Changing Climates: Rapidly Retreating Cliffs of the Suffolk Coast, UK. Geomorphology 2012, 153–154, 48–60. [Google Scholar] [CrossRef]
- Cenci, L.; Disperati, L.; Sousa, L.P.; Phillips, M.; Alves, F.L. Geomatics for Integrated Coastal Zone Management: Multitemporal Shoreline Analysis and Future Regional Perspective for the Portuguese Central Region. J. Coast. Res. 2013, 65, 1349–1354. [Google Scholar] [CrossRef]
- Virdis, S.G.P.; Oggiano, G.; Disperati, L. A Geomatics Approach to Multitemporal Shoreline Analysis in Western Mediterranean: The Case of Platamona-Maritza Beach (Northwest Sardinia, Italy). J. Coast. Res. 2012, 28, 624–640. [Google Scholar] [CrossRef]
- Buchanan, D.H.; Naylor, L.A.; Hurst, M.D.; Stephenson, W.J. Erosion of Rocky Shore Platforms by Block Detachment from Layered Stratigraphy. Earth Surf. Process. Landforms 2020, 45, 1028–1037. [Google Scholar] [CrossRef]
- Crowell, M.; Leatherman, S.P.; Buckley, M.K. Historical Shoreline Change: Error Analysis and Mapping Accuracy. J. Coast. Res. 1991, 7, 839–852. [Google Scholar]
- Fletcher, C.; Rooney, J.; Barbee, M.; Lim, S.; Richmond, B. Mapping Shoreline Change Using Digital Orthophotogrammetry on Maui, Hawaii. J. Coast. Res. 2003, 38, 106–124. [Google Scholar]
- Del Río, L.; Gracia, F.J. Error Determination in the Photogrammetric Assessment of Shoreline Changes. Nat. Hazards 2013, 65, 2385–2397. [Google Scholar] [CrossRef]
- Bloom, C.K.; Singeisen, C.; Stahl, T.; Howell, A.; Massey, C. Earthquake Contributions to Coastal Cliff Retreat. Earth Surf. Dyn. 2023, 11, 757–778. [Google Scholar] [CrossRef]
- Trenhaile, A.S. Cliffs and Rock Coasts; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 3, ISBN 9780080878850. [Google Scholar]
- Wolters, G.; Müller, G. Effect of Cliff Shape on Internal Stresses and Rock Slope Stability. J. Coast. Res. 2008, 24, 43–50. [Google Scholar] [CrossRef]
- Sunamura, T. Geomorphology of Rocky Coasts; Coastal Morphology and Research; J. Wiley: Chichester, UK; New York, NY, USA, 1992; ISBN 0471917753. [Google Scholar]
- Everts, C.H. Seacliff Retreat and Coarse Sediment Yields in Southern California. In Proceedings of the Coastal Sediments ’91 (American Society Civil Engineering), Seattle, WA, USA, 25–27 June 1991; pp. 1586–1598. [Google Scholar]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical Parameterization of Setup, Swash, and Runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Goda, Y. Random Seas and Design of Maritime Structures; World Scientific: Singapore, 2010; Volume 33, ISBN 978-981-4282-39-0. [Google Scholar]
- Emery, K.O.; Kuhn, G.G. Sea Cliffs: Their Processes, Profiles, and Classification. GSA Bull. 1982, 93, 644–654. [Google Scholar] [CrossRef]
- Ho, T.K. Random Decision Forests Tin Kam Ho Perceptron Training. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Azar, A.T.; Elshazly, H.I.; Hassanien, A.E.; Elkorany, A.M. A Random Forest Classifier for Lymph Diseases. Comput. Methods Programs Biomed. 2014, 113, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J.R. Chapter 2—Constructing Decision Trees; Morgan Kaufmann: San Francisco, CA, USA, 1993; pp. 17–26. ISBN 978-0-08-050058-4. [Google Scholar]
- Chen, X.; Huang, L.; Xie, D.; Zhao, Q. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association Prediction. Cell Death Dis. 2018, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Guyon, I. A Scaling Law for the Validation-Set Training-Set Size Ratio; AT&T Bell Laboratories: Murray Hill, NJ, USA, 1997; Volume 1. [Google Scholar]
- Bej, S.; Davtyan, N.; Wolfien, M.; Nassar, M.; Wolkenhauer, O. LoRAS: An Oversampling Approach for Imbalanced Datasets. Mach. Learn. 2021, 110, 279–301. [Google Scholar] [CrossRef]
- Liashchynskyi, P.; Liashchynskyi, P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv 2019, arXiv:1912.06059. [Google Scholar]
- Morgenstern, N.U.; Price, V.E. The Analysis of the Stability of General Slip Surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.K. Obtaining Modeling Parameters for Engineering Design by Rock Mass Characterization. In Proceedings of the 11th ISRM Congress, Lisbon, Portugal, 9–13 July 2007; pp. 381–384. [Google Scholar]
- Brown, E. Estimating the Mechanical Properties of Rock Masses. In SHIRMS 2008, Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium, Perth, Australia, 16–19 September 2008; Australian Centre for Geomechanics: Crawley, Australia, 2008; pp. 3–22. [Google Scholar] [CrossRef]
- Delle Rose, M.; Parise, M. Speleogenesi e Geomorfologia Del Sistema Carsico Delle Grotte Della Poesia Nell’ambito Dell’evoluzione Quaternaria Della Costa Adriatica Salentina. Atti Mem. Comm. Grotte E. Boegan. 2005, 40, 153–173. [Google Scholar]
- Miccadei, E.; Mascioli, F.; Ricci, F.; Piacentini, T. Geomorphology of Soft Clastic Rock Coasts in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geomorphology 2019, 324, 72–94. [Google Scholar] [CrossRef]
- Colantoni, P.; Mencucci, D.; Nesci, O. Coastal Processes and Cliff Recession between Gabicce and Pesaro (Northern Adriatic Sea): A Case History. Geomorphology 2004, 62, 257–268. [Google Scholar] [CrossRef]
- Sunamura, T. A Relationship between Wave-Induced Cliff Erosion and Erosive Force of Waves. J. Geol. 1977, 85, 613–618. [Google Scholar] [CrossRef]
- Trenhaile, A.S. Hard-Rock Coastal Modelling: Past Practice and Future Prospects in a Changing World. J. Mar. Sci. Eng. 2019, 7, 34. [Google Scholar] [CrossRef]
- Trenhaile, A.S. The Effect of Holocene Changes in Relative Sea Level on the Morphology of Rocky Coasts. Geomorphology 2010, 114, 30–41. [Google Scholar] [CrossRef]
- Hursta, M.D.; Rood, D.H.; Ellis, M.A.; Anderson, R.S.; Dornbusch, U. Recent Acceleration in Coastal Cliff Retreat Rates on the South Coast of Great Britain. Proc. Natl. Acad. Sci. USA 2016, 113, 13336–13341. [Google Scholar] [CrossRef] [PubMed]
- Limber, P.W.; Barnard, P.L.; Vitousek, S.; Erikson, L.H. A Model Ensemble for Projecting Multidecadal Coastal Cliff Retreat during the 21st Century. J. Geophys. Res. Earth Surf. 2018, 123, 1566–1589. [Google Scholar] [CrossRef]
- Fraccaroli, M.; Mazzuchelli, G.; Bizzarri, A. Machine Learning Techniques for Extracting Relevant Features from Clinical Data for COVID-19 Mortality Prediction. In Proceedings of the 2021 IEEE Symposium on Computers and Communications (ISCC), Athens, Greece, 5–8 September 2021; pp. 1–7. [Google Scholar]
- Fadja, A.N.; Fraccaroli, M.; Bizzarri, A.; Mazzuchelli, G.; Lamma, E. Neural-Symbolic Ensemble Learning for Early-Stage Prediction of Critical State of Covid-19 Patients. Med. Biol. Eng. Comput. 2022, 60, 3461–3474. [Google Scholar] [CrossRef]
- Zeng, T.; Liang, Y.; Dai, Q.; Tian, J.; Chen, J.; Lei, B.; Yang, Z.; Cai, Z. Application of Machine Learning Algorithms to Screen Potential Biomarkers under Cadmium Exposure Based on Human Urine Metabolic Profiles. Chin. Chem. Lett. 2022, 33, 5184–5188. [Google Scholar] [CrossRef]
- Parsa, M. A Data Augmentation Approach to XGboost-Based Mineral Potential Mapping: An Example of Carbonate-Hosted ZnPb Mineral Systems of Western Iran. J. Geochem. Explor. 2021, 228, 106811. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling Water Stress in a Shiraz Vineyard Using Hyperspectral Imaging and Machine Learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Nazem, M.; Lin, X. Modelling of Municipal Solid Waste Gasification Using an Optimised Ensemble Soft Computing Model. Fuel 2021, 289, 119903. [Google Scholar] [CrossRef]
- Ogawa, H.; Dickson, M.E.; Kench, P.S. Generalised Observations of Wave Characteristics on Near-Horizontal Shore Platforms: Synthesis of Six Case Studies from the North Island, New Zealand. N. Z. Geog. 2016, 72, 107–121. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A Third-Generation Wave Model for Coastal Regions 1. Model Description and Validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Barton, N.; Shen, B.; Bar, N. Limited Heights of Vertical Cliffs and Mountain Walls Linked to Fracturing in Deep Tunnels—Q-Slope Application If Jointed Slopes. In Proceedings of the ISRM VIII Brazilian Symposium on Rock Mechanics SBMR 2018, Salvador, Brasil, 28 August–1 September 2018. [Google Scholar]
- Barton, N.; Shen, B. Extension Strain and Rock Strength Limits for Deep Tunnels, Cliffs, Mountain Walls and the Highest Mountains. Rock Mech. Rock Eng. 2018, 51, 3945–3962. [Google Scholar] [CrossRef]
- Quinn, J.D.; Rosser, N.J.; Murphy, W.; Lawrence, J.A. Identifying the Behavioural Characteristics of Clay Cliffs Using Intensive Monitoring and Geotechnical Numerical Modelling. Geomorphology 2010, 120, 107–122. [Google Scholar] [CrossRef]
- Styles, T.D.; Coggan, J.S.; Pine, R.J. Back Analysis of the Joss Bay Chalk Cliff Failure Using Numerical Modelling. Eng. Geol. 2011, 120, 81–90. [Google Scholar] [CrossRef]
Lithology | γ (KN/m3) | GSI | mi | D | UCS (MPa) |
---|---|---|---|---|---|
Argille Azzurre Fm. (228–265) | 24 | 35 | 7 | 0 | 25 |
Faulted rocks (266–276) | 23 | 25 | 4 | 0.6 | 20 |
Argille Azzurre Fm. (277–290) | 24 | 35 | 7 | 0 | 25 |
Argille Azzurre Fm. (291–310) | 24 | 45 | 7 | 0 | 30 |
Orizzonte del Trave | 25 | 50 | 17 | 0 | 50 |
Sector | Transects | GSI | UCS (MPa) |
---|---|---|---|
Portonovo | 1–79 | 50 | 35 |
Mezzavalle | 80–184 | 0 | 5 |
185–215 | 0 | 1 | |
Trave | 216–227 | 45 | 30 |
228–265 | 35 | 25 | |
266–276 | 25 | 20 | |
277–290 | 35 | 25 | |
291–310 | 45 | 30 |
Periods | Portonovo | Mezzavalle | Trave | |||
---|---|---|---|---|---|---|
EPR (m/yr) | ECI (m) | EPR (m/yr) | ECI (m) | EPR (m/yr) | ECI (m) | |
1978–2022 | −0.24 | 0.09 | −0.09 | 0.09 | −0.25 | 0.09 |
Section | FS | Cliff Height (m) |
---|---|---|
1 | 2.04 | 37 |
2 | 1.86 | 42 |
3 | 1.52 | 50 |
4 | 1.12 | 73 |
5 | 1.21 | 80 |
6 | 0.91 | 120 |
7 | 1.14 | 97 |
8 | 0.98 | 60 |
9 | 2.26 | 50 |
10 | 4.37 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fullin, N.; Fraccaroli, M.; Francioni, M.; Fabbri, S.; Ballaera, A.; Ciavola, P.; Ghirotti, M. Detection of Cliff Top Erosion Drivers through Machine Learning Algorithms between Portonovo and Trave Cliffs (Ancona, Italy). Remote Sens. 2024, 16, 2604. https://doi.org/10.3390/rs16142604
Fullin N, Fraccaroli M, Francioni M, Fabbri S, Ballaera A, Ciavola P, Ghirotti M. Detection of Cliff Top Erosion Drivers through Machine Learning Algorithms between Portonovo and Trave Cliffs (Ancona, Italy). Remote Sensing. 2024; 16(14):2604. https://doi.org/10.3390/rs16142604
Chicago/Turabian StyleFullin, Nicola, Michele Fraccaroli, Mirko Francioni, Stefano Fabbri, Angelo Ballaera, Paolo Ciavola, and Monica Ghirotti. 2024. "Detection of Cliff Top Erosion Drivers through Machine Learning Algorithms between Portonovo and Trave Cliffs (Ancona, Italy)" Remote Sensing 16, no. 14: 2604. https://doi.org/10.3390/rs16142604
APA StyleFullin, N., Fraccaroli, M., Francioni, M., Fabbri, S., Ballaera, A., Ciavola, P., & Ghirotti, M. (2024). Detection of Cliff Top Erosion Drivers through Machine Learning Algorithms between Portonovo and Trave Cliffs (Ancona, Italy). Remote Sensing, 16(14), 2604. https://doi.org/10.3390/rs16142604