Observed Retrogressive Thaw Slump Evolution in the Qilian Mountains
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Synthetic Aperture Radar Data
3.1.2. Optical Remote Sensing Images
3.1.3. In Situ Observations
3.1.4. Earthquake Observations
3.2. Methods
3.2.1. Mapping of RTS from Optical Remote Sensing
3.2.2. Ground Deformation Derived from InSAR
3.2.3. Freezing/Thawing Index
3.2.4. Additional Processing
4. Results
4.1. RTS Development
4.2. Ground Deformation Changes
5. Discussion
5.1. The Potential Driving Factors
5.1.1. Climate Factors
5.1.2. Freeze–thaw Process
5.1.3. Earthquakes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Zhang, T.; Mu, C.; Zhong, X.; Peng, X.; Cao, B.; Lu, L.; Zheng, L.; Wu, X.; Liu, J. From the Third Pole to the Arctic: Changes and impacts of the climate and cryosphere. J. Glaciol. Geocryol. 2020, 42, 104–123. [Google Scholar]
- Guo, D.; Wang, H. CMIP5 permafrost degradation projection: A comparison among different regions. J. Geophys. Res. Atmos. 2016, 121, 4499–4517. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. Simulated historical (1901–2010) changes in the permafrost extent and active layer thickness in the Northern Hemisphere. J. Geophys. Res. Atmos. 2017, 122, 12285–212295. [Google Scholar] [CrossRef]
- Peng, X.; Frauenfeld, O.W.; Cao, B.; Wang, K.; Wang, H.; Su, H.; Huang, Z.; Yue, D.; Zhang, T. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across china. J. Geophys. Res. Earth Surf. 2016, 121, 1984–2000. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, K.; Zhong, X. Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China. Cryosphere Discuss. 2014, 8, 3785–3809. [Google Scholar]
- Harris, C.; Arenson, L.U.; Christiansen, H.H.; Etzelmüller, B.; Frauenfelder, R.; Gruber, S.; Haeberli, W.; Hauck, C.; Hoelzle, M.; Humlum, O. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci. Rev. 2009, 92, 117–171. [Google Scholar] [CrossRef]
- Genxu, W.; Yan, Y.; Guangtao, Z.; Ruiying, C. Cryosphere Ecosystems: Outpost and Barrier in Global Change. Bull. Chin. Acad. Sci. (Chin. Version) 2020, 35, 425–433. [Google Scholar]
- Jin, H.; Li, S.; Cheng, G.; Shaoling, W.; Li, X. Permafrost and climatic change in China. Glob. Planet. Chang. 2000, 26, 387–404. [Google Scholar] [CrossRef]
- Jing, L.; Fujun, N.; Zhanju, L.; Minghao, L.; Guo’an, Y. Development of thawing hazards and thermal influence on permafrost along Qinghai-Tibet engineering corridor. J. Eng. Geol. 2014, 22, 326–333. [Google Scholar]
- Woods, G.C.; Simpson, M.J.; Pautler, B.G.; Lamoureux, S.F.; Lafrenière, M.J.; Simpson, A.J. Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian High Arctic. Geochim. Cosmochim. Acta 2011, 75, 7226–7241. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, L.; Huang, L.; Ng, K.S. An automated, generalized, deep-learning-based method for delineating the calving fronts of Greenland glaciers from multi-sensor remote sensing imagery. Remote Sens. Environ. 2021, 254, 112265. [Google Scholar] [CrossRef]
- Huang, L.; Luo, J.; Lin, Z.; Niu, F.; Liu, L. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sens. Environ. 2020, 237, 111534. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Way, R.G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.K. Permafrost thaw-related slope failures in Alaska’s Arctic National Parks, c. 1980–2019. Permafr. Periglac. Process. 2021, 32, 392–406. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, T.-j.; Wu, J.; Peng, X.; Zhong, X.; Mu, C.; Wang, K.; Wu, Q.; Cheng, G. Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains. J. Glaciol. Geocryol 2013, 35, 19–29. [Google Scholar]
- Cao, B.; Zhang, T.; Peng, X.; Mu, C.; Wang, Q.; Zheng, L.; Wang, K.; Zhong, X. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China. J. Geophys. Res. Atmos. 2018, 123, 7935–7949. [Google Scholar] [CrossRef]
- Wu, J.-C.; Yu, S.; Yu, H.; Li, J.-P. Permafrost in the Middle-East Section of Qilian Mountains(II):Characters of permafrost. J. Glaciol. Geocryol. 2007, 29, 426–432. [Google Scholar] [CrossRef]
- Mu, C.; Zhang, T.; Cao, B.; Wan, X.; Peng, X.; Cheng, G. Study of the organic carbon storage in the active layer of the permafrost over the Eboling Mountain in the upper reaches of the Heihe River in the Eastern Qilian Mountains. J. Glaciol. Geocryol. 2013, 35, 1–9. [Google Scholar]
- Map of permafrost distribution in the Qilian Mountains. National Tibetan Plateau/Third Pole Environment Data Center. 2020. Available online: https://cstr.cn/18406.11.Geocry.tpdc.270456 (accessed on 16 August 2023).
- Qi, J.; Ma, W. State-of-art of research on mechanical properties of frozen soils. Rock Soil Mech. 2010, 31, 133–143. [Google Scholar]
- Usai, S. A New Approach for Long Term Monitoring of Deformations by Differential SAR Interferometry; Delft University of Tech: Delft, The Netherlands, 2001; pp. 1–165. ISBN 90-407-2189-0. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Du, Q.; Li, G.; Chen, D.; Zhou, Y.; Qi, S.; Wu, G.; Chai, M.; Tang, L.; Jia, H.; Peng, W. SBAS-InSAR-Based analysis of surface deformation in the eastern tianshan mountains, China. Front. Earth Sci. 2021, 9, 729454. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.; Zhu, J.; Liu, J. Theory and Application of Monitoring 3-D Deformation with InSAR; Science Press: Beijing, China, 2021. [Google Scholar]
- Frauenfeld, O.W.; Zhang, T.; Mccreight, J.L. Northern hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 47–63. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Q.; Zhao, L.; Batkhishig, O.; Watanabe, M. Observed trends in surface freezing/thawing index over the period 1987–2005 in Mongolia. Cold Reg. Sci. Technol. 2011, 69, 105–111. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Jin, R.; Yang, X.; Lü, L. Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. Quat. Int. 2014, 349, 187–195. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, T.; Cao, B.; Wang, Q.; Wang, K.; Shao, W.; Guo, H. Changes in freezing-thawing index and soil freeze depth over the Heihe River Basin, western China. Arct. Antarct. Alp. Res. 2016, 48, 161–176. [Google Scholar] [CrossRef]
- Guglielmin, M. Ground surface temperature (GST), active layer and permafrost monitoring in continental Antarctica. Permafr. Periglac. Process. 2006, 17, 133–143. [Google Scholar] [CrossRef]
- Fujun, N.; Guodong, C.; Yuanming, L.; Dewu, J. Instability study on thaw slumping in permafrost regions of Qinghai-Tibet Plateau. Chin. J. Geotech. Eng. 2004, 26, 402–406. [Google Scholar]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Chang. 2012, 110, 669–696. [Google Scholar] [CrossRef]
- Huggel, C.; Clague, J.J.; Korup, O. Is climate change responsible for changing landslide activity in high mountains? Earth Surf. Process. Landf. 2012, 37, 77–91. [Google Scholar] [CrossRef]
- Owczarek, P.; Opała-Owczarek, M.; Boudreau, S.; Lajeunesse, P.; Stachnik, Ł. Re-activation of landslide in sub-Arctic areas due to extreme rainfall and discharge events (the mouth of the Great Whale River, Nunavik, Canada). Sci. Total Environ. 2020, 744, 140991. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, J.; Wu, T.; Hao, J.; Wu, X.; Ma, X.; Zhu, X.; Lou, P.; Zhang, L. Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain. Remote Sens. 2022, 14, 5059. [Google Scholar] [CrossRef]
- Patton, A.I.; Rathburn, S.L.; Capps, D.M. Landslide response to climate change in permafrost regions. Geomorphology 2019, 340, 116–128. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Pavlova, I.; Jomelli, V.; Brunstein, D.; Grancher, D.; Martin, E.; Déqué, M. Debris flow activity related to recent climate conditions in the French Alps: A regional investigation. Geomorphology 2014, 219, 248–259. [Google Scholar] [CrossRef]
- McRoberts, E.; Morgenstern, N.R. The stability of thawing slopes. Can. Geotech. J. 1974, 11, 447–469. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, S.; Zhao, L.; Li, Z.; Kang, S. Global warming weakening the inherent stability of glaciers and permafrost. Sci. Bull. 2019, 64, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Lacelle, D.; Brooker, A.; Fraser, R.H.; Kokelj, S.V. Distribution and growth of thaw slumps in the Richardson Mountains–Peel Plateau region, northwestern Canada. Geomorphology 2015, 235, 40–51. [Google Scholar] [CrossRef]
- Savi, S.; Comiti, F.; Strecker, M.R. Pronounced increase in slope instability linked to global warming: A case study from the eastern European Alps. Earth Surf. Process. Landf. 2021, 46, 1328–1347. [Google Scholar] [CrossRef]
- Ma, L.-F.; Niu, F.-J.; Yang, N.-F. Analysis on ground temperature changes and landslide process of thaw slumping in permafrost regions. Hydrogeol. Eng. Geol. 2006, 33, 53–56. [Google Scholar]
- Niuli, L.; Xuesong, M. Influence of humidity on per—Mafrostsubgradestabilityin Qinghai-Tibethighway. Subgrade Eng. 2011, 23, 5–11. [Google Scholar]
- Jin, D.-W.; Sun, J.-F.; Fu, S.-L. Discussion on landslides hazard mechanism of two kinds of low angle slope in permafrost region of Qinghai-Tibet plateau. Yantu Lixue (Rock Soil Mech.) 2005, 26, 774–778. [Google Scholar]
- Che, A.-l.; Wu, Z.-j.; Wang, P. Stability of pile foundations base on warming effects on the permafrost under earthquake motions. Soils Found. 2014, 54, 639–647. [Google Scholar] [CrossRef]
- Moro, M.; Chini, M.; Saroli, M.; Atzori, S.; Stramondo, S.; Salvi, S. Analysis of large, seismically induced, gravitational deformations imaged by high-resolution COSMO-SkyMed synthetic aperture radar. Geology 2011, 39, 527–530. [Google Scholar] [CrossRef]
- Bontemps, N.; Lacroix, P.; Doin, M.-P. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sens. Environ. 2018, 210, 144–158. [Google Scholar] [CrossRef]
Sensor | Resolution (m) | Acquisition Date |
---|---|---|
Pleiades-1 | 0.50 | 14 August 2015, 16 July 2017, 23 August 2018, 28 February 2020 |
GeoEye-1 | 0.48 | 27 October 2022 |
Date | Epicenter [Latitude, Longitude] | Magnitude (M) | Depth (km) | Distance (km) |
---|---|---|---|---|
5 January 2023 | [37.91, 101.13] | 4.2 | 10 | 23.70 |
27 December 2022 | [37.74, 101.3] | 4.1 | 10 | 46.57 |
10 December 2022 | [37.76, 101.26] | 4.2 | 10 | 42.44 |
15 August 2022 | [38.43, 99.26] | 4.7 | 8 | 149.72 |
7 March 2022 | [37.73, 101.44] | 4.2 | 9 | 57.25 |
8 January 2022 | [37.77, 101.26] | 6.9 | 10 | 41.74 |
16 September 2019 | [38.60, 100.35] | 5.0 | 11 | 81.19 |
9 August 2019 | [37.69, 101.59] | 4.9 | 9 | 70.85 |
12 May 2019 | [39.96, 100.58] | 4.0 | 14 | 219.09 |
21 January 2016 | [37.68, 101.62] | 6.4 | 10 | 73.69 |
23 November 2015 | [38.00, 100.40] | 5.2 | 10 | 42.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Peng, X.; Zhang, Y.; Frauenfeld, O.W.; Wei, G.; Chen, G.; Huang, Y.; Mu, C.; Du, J. Observed Retrogressive Thaw Slump Evolution in the Qilian Mountains. Remote Sens. 2024, 16, 2490. https://doi.org/10.3390/rs16132490
Liu X, Peng X, Zhang Y, Frauenfeld OW, Wei G, Chen G, Huang Y, Mu C, Du J. Observed Retrogressive Thaw Slump Evolution in the Qilian Mountains. Remote Sensing. 2024; 16(13):2490. https://doi.org/10.3390/rs16132490
Chicago/Turabian StyleLiu, Xingyun, Xiaoqing Peng, Yongyan Zhang, Oliver W. Frauenfeld, Gang Wei, Guanqun Chen, Yuan Huang, Cuicui Mu, and Jun Du. 2024. "Observed Retrogressive Thaw Slump Evolution in the Qilian Mountains" Remote Sensing 16, no. 13: 2490. https://doi.org/10.3390/rs16132490
APA StyleLiu, X., Peng, X., Zhang, Y., Frauenfeld, O. W., Wei, G., Chen, G., Huang, Y., Mu, C., & Du, J. (2024). Observed Retrogressive Thaw Slump Evolution in the Qilian Mountains. Remote Sensing, 16(13), 2490. https://doi.org/10.3390/rs16132490