Elevation Changes of A’nyemaqen Snow Mountain Revealed with Satellite Remote Sensing
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.1.1. ASTER L1A V003
3.1.2. TanDEM–X
3.1.3. Randolph Glacier Inventory
3.1.4. ICESat–2
3.1.5. ERA5
3.2. Methods
3.2.1. DEM Time Series Determination
3.2.2. DEM Verification
3.2.3. Contribution and Correlation Analysis
3.2.4. Elevation Forecast
4. Results
4.1. Accuracy Evaluation of the DEM
4.2. Elevation Change
5. Discussion
5.1. DEM and Elevation Changes
5.2. Elevation Changes with Temperature and Precipitation
5.3. Elevation Change Prediction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Menounos, B.; Kapitsa, V.; Neckel, N.; Yang, W.; Yao, T. High Mountain Asian glacier response to climate revealed by multi–temporal satellite observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.; Elmore, A. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.; Bierkens, M. Asia’s water balance. Nat. Geosci. 2012, 5, 841–842. [Google Scholar] [CrossRef]
- Pritchard, D.H. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K.; et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Guangjian, W.; Tandong, Y.; Weicai, W.; Huabiao, Z.; Wei, Y.; Guoqing, Z.; Shenghai, L.; Wusheng, Y.; Yanbin, L.; Wentao, H. Glacial hazards on Tibetan Plateau and surrounding alpines. Bull. Chin. Acad. Sci. 2019, 34, 1285–1292. [Google Scholar]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier mass change in High Mountain Asia through 2100 using the open–source python glacier evolution model (PyGEM). Front. Earth Sci. 2020, 7, 331. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Immerzeel, W.W.; Kraaijenbrink, P.D.; Shea, J.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.; de Jong, S.M. High–resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ. 2014, 150, 93–103. [Google Scholar] [CrossRef]
- Nascetti, A.; Nocchi, F.; Camplani, A.; Di Rico, C.; Crespi, M. Exploiting Sentinel–1 amplitude data for glacier surface velocity field measurements: Feasibility demonstration on Baltoro glacier. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 783–788. [Google Scholar] [CrossRef]
- Moragues, S.N.; Lenzano, M.G.; Lo Vecchio Repetto, A.; Falaschi, D.; Lenzano, L.E. Surface Velocities of Upsala Glacier, Southern Patagonian Andes, Estimated Using Cross–Correlation Satellite Imagery: 2013–2014 Period; Servicio Nacional de Geología y Minería: Santiago, Chile, 2018. [Google Scholar]
- Wang, P.; Li, Z.; Xu, C.; Xing, W.; Zhou, P.; Zhang, H. Multi–decadal variations in glacier flow velocity and the influencing factors of Urumqi Glacier No. 1 in Tianshan Mountains, Northwest China. J. Arid. Land 2017, 9, 900–910. [Google Scholar] [CrossRef]
- Maussion, F.; Butenko, A.; Champollion, N.; Dusch, M.; Eis, J.; Fourteau, K.; Gregor, P.; Jarosch, A.H.; Landmann, J.; Oesterle, F. The open global glacier model (OGGM) v1. 1. Geosci. Model Dev. 2019, 12, 909–931. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, G.; Mu, X.; Liu, Y.; Tian, P. Historical and projected evolutions of glaciers in response to climate change in High Mountain Asia. Environ. Res. 2023, 237, 117037. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Zemp, M.; Joerg, P.C.; Salzmann, N. High uncertainty in 21st century runoff projections from glacierized basins. J. Hydrol. 2014, 510, 35–48. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat–based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.; Konovalov, V.; Le Bris, R. On the accuracy of glacier outlines derived from remote–sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Liu, G.; Fan, J.H.; Zhao, F.; Mao, K.B. Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM–X SAR interferometry. J. Mt. Sci. 2017, 14, 859–869. [Google Scholar] [CrossRef]
- Pandey, P.; Manickam, S.; Bhattacharya, A.; Singh, G.; Venkataraman, G.; Ray, P.C. Mass change of Gangotri glacier based on TanDEM–X measurements. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6168–6170. [Google Scholar]
- Jaber, W.A.; Floricioiu, D.; Johnson, E.; Rott, H. Recent surface elevation changes of Patagonian glaciers derived with TanDEM–X. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2821–2824. [Google Scholar]
- Du, W.; Shi, N.; Xu, L.; Zhang, S.; Ma, D.; Wang, S. Monitoring the spatiotemporal difference in glacier elevation on Bogda Mountain from 2000 to 2017. Int. J. Environ. Res. Public Health 2021, 18, 6374. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sharma, M.C.; Murari, M.K. Spatially heterogeneous glacier elevation change in the Jankar Chhu Watershed, Lahaul Himalaya, India derived using ASTER DEMs. Geocarto Int. 2022, 37, 17799–17825. [Google Scholar] [CrossRef]
- Mo, Q.; Liu, S.; Ma, Y.; Li, M. Glacier elevation changes monitoring in Nyainqentanglha Range using ICESat. Sci. Surveting Mapp. 2018, 43, 59–65. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated global glacier mass loss in the early twenty–first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kääb, A. Modeling glacier elevation change from DEM time series. Remote Sens. 2015, 7, 10117–10142. [Google Scholar] [CrossRef]
- Liu, S. Glacier fluctuations and the inferred climate changes in the A’Nyêmaqên Mountains in the source area of the Yellow River. J. Glaciol. Geocryol. 2002, 24, 701–707. [Google Scholar]
- Zhou, M.; Xu, S.; Wang, Y.; Wang, Y.; Hou, S. Recent 50–Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing. Remote Sens. 2022, 14, 6286. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, S.; Guo, W.; Li, J.; Long, S.; Wang, X.; Wei, J.; Zhang, Z.; Wu, K. Recent surface elevation changes of three representative glaciers in Ányêmaqên Mountains, source region of Yellow River. J. Glaciol. Geocryol. 2018, 40, 231–237. [Google Scholar]
- Wang, K.; Yang, T.; He, Y.; JI, Q. Research for glaciers and climate change of Anyemaqen Mountain nearly 30 years. Res. Soil Water Conserv. 2015, 22, 300–303308. [Google Scholar]
- Li, H.; Yan, L.; Wen, T.; Feng, X. Characteristics of Climate Change and Its Impact Assessment in the Three–River Regions. Plateau Meteorol 2022, 41, 306–316. [Google Scholar]
- Wang, Z.; Zhang, T.; Wang, W. Glacier detachment chain process in the Amney Machen Mountain. J. Beijing Norm. Univ. (Nat. Sci.) 2022, 58, 950–962. [Google Scholar]
- Wu, X.; Li, Q.; He, J. Composition characteristics and its environmental implication of insoluble microparticles in snow cover on Yehelong Glacier, Mt. Anyemaqen, source region of the Yellow River. J. Glaciol. Geocryol. 2021, 43, 1746–1754. [Google Scholar] [CrossRef]
- Wang, J. Climatic geomorphology of the Anyemaqen Mountains. J. Glaciol. Geocryol. 1984, 59, 120–127. [Google Scholar]
- Yang, J.; Ding, Y.; Liu, S.; Lu, A.; Chen, R. Glacier change and its effect on surface runoff in the source regions of the Yangtze and Yellow rivers. J. Nat. Resour. 2003, 18, 595–602. [Google Scholar]
- San, B.T.; Suzen, M. Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data. Int. J. Remote Sens. 2005, 26, 5013–5027. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Dongchen, E.; Li, Z.; Shao, Y. Digital elevation model construction using ASTER stereo VNIR scene in Antarctic in–land ice sheet. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 3347–3349. [Google Scholar]
- Lachaise, M.; Bachmann, M.; Fritz, T.; Huber, M.; Schweisshelm, B.; Wessel, B. The TanDEM–X Change DEM: The new temporal DEM of the TanDEM–X Mission. In Proceedings of the EUSAR 2021 13th European Conference on Synthetic Aperture Radar, Online, 29 March 2021–1 April 2021; pp. 1–6. [Google Scholar]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM–X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. Geocryol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Shangguan, D.; Ding, Y. A new global gridded glacier dataset based on the Randolph Glacier Inventory version 6.0. J. Glaciol. Geocryol. 2021, 67, 773–776. [Google Scholar] [CrossRef]
- Yu, Y.; Sandwell, D.T.; Gille, S.T.; Villas Bôas, A.B. Assessment of ICESat–2 for the recovery of ocean topography. Geophys. J. Int. 2021, 226, 456–467. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat–2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, P.F.; Li, Y.; Xie, Y.Z.; Fu, H.Q. Accuracy assessment of ICESat–2 ATL08 terrain estimates: A case study in Spain. J. Cent. South Univ. 2022, 29, 226–238. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Muñoz–Sabater, J.; Dutra, E.; Agustí–Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5–Land: A state–of–the–art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z. A first evaluation of ERA5–Land reanalysis temperature product over the Chinese Qilian Mountains. Front. Earth Sci. 2022, 10, 907730. [Google Scholar] [CrossRef]
- Lei, X.; Xu, W.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M. How well does the ERA5 reanalysis capture the extreme climate events over China? Part I: Extreme precipitation. Front. Environ. Sci. 2022, 10, 921658. [Google Scholar] [CrossRef]
- Xu, W.; Lei, X.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M. How well does the ERA5 reanalysis capture the extreme climate events over China? Part II: Extreme temperature. Front. Environ. Sci. 2022, 10, 921659. [Google Scholar] [CrossRef]
- Girod, L.; Nuth, C.; Kääb, A.; McNabb, R.; Galland, O. MMASTER: Improved ASTER DEMs for elevation change monitoring. Remote Sens. 2017, 9, 704. [Google Scholar] [CrossRef]
- Scheick, J.; Arendt, A.; Heagy, L.; Perez, F. Introducing icepyx, an open source Python library for obtaining and working with ICESat–2 data. Earth Space Sci. Open Arch. ESSOAr 2019, 2451406849. [Google Scholar] [CrossRef]
- Scheick, J.; Arendt, A.A.; Heagy, L.J.; Paolo, F.; Perez, F.; Steiker, A.E. icepyx: Developing Community and Software Around ICESat–2 Data. In Proceedings of the AGU Fall Meeting Abstracts, Online, 1–10 December 2020; p. IN037–07. [Google Scholar]
- Hartmann, D. Impacts on Glacier Mass Balance in High Mountain Asia Assessed Using Machine Learning. Master’s Thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2022. [Google Scholar]
- Kader, G.; Franklin, C. The evolution of Pearson’s correlation coefficient. Math. Teach. 2008, 102, 292–299. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Zhang, H.; Zhu, K.; Han, C. Evaluating the Forecast of ARIMA Models Based on Statistical Methods. Recent Adv. Stat. Appl. Relat. Areas 2008, 1, 450–453. [Google Scholar]
- Lai, Y.; Dzombak, D.A. Use of the autoregressive integrated moving average (ARIMA) model to forecast near–term regional temperature and precipitation. Weather. Forecast. 2020, 35, 959–976. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Marin–Calispa, H.; Cuenca, E.; Morales–Navarrete, D.; Basantes, R. Machine Learning Applied to the Analysis of Glacier Masses. In Proceedings of the Conference on Information and Communication Technologies of Ecuador, Cuenca, Ecuador, 18–20 October 2023; pp. 160–174. [Google Scholar]
- Weifeng, X.; Jun, L.; Dailiang, P.; Jinge, J.; Hongxuan, X.; Hongyue, Y.; Jun, Y. Multi–source DEM accuracy evaluation based on ICESat–2 in Qinghai–Tibet Plateau, China. Int. J. Digit. Earth 2024, 17, 2297843. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, S.; Chang, L.; Sun, W. Large–scale seasonal changes in glacier thickness across High Mountain Asia. Geophys. Res. Lett. 2017, 44, 10427–10435. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, S.; Sun, W. Continuous estimates of glacier mass balance in high mountain Asia based on ICESat–1, 2 and GRACE/GRACE follow–on data. Geophys. Res. Lett. 2021, 48, e2020GL090954. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, N.; Liu, J.; Yan, Z.; Xu, C.; Cai, J.; Shang, Y.; Zhu, J. Glacier variations and their response to climate change in an arid inland river basin of Northwest China. J. Arid. Land 2020, 12, 357–373. [Google Scholar] [CrossRef]
- Demberel, O.; Munkhbat, B.; Dorjsuren, B.; Callaghan, T.V.; Tsogoo, B.; Zemtsov, V.A.; Shaarav, O.; Gongor, E.; Jargalsaikhan, Z.; Ganhuyag, N. Relationship between dynamics of modern glaciers of the Mt. Munkhkhairkhan (Mongolian Altai) and climate. Water 2023, 15, 1921. [Google Scholar] [CrossRef]
- Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J.L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C. Current state of glaciers in the tropical Andes: A multi–century perspective on glacier evolution and climate change. Cryosphere 2013, 7, 81–102. [Google Scholar] [CrossRef]
- Zekollari, H.; Huss, M.; Farinotti, D. On the imbalance and response time of glaciers in the European Alps–dataset. Geophys. Res. Lett. 2020, 47, e2019GL085578. [Google Scholar] [CrossRef]
- Oerlemans, J. Linear modelling of glacier length fluctuations. Geogr. Ann. Ser. A Phys. Geogr. 2012, 94, 183–194. [Google Scholar] [CrossRef]
Datasets | Time | Spatial Resolution | Source |
---|---|---|---|
ASTER L1A V003 | 12 May 2002–29 November 2022 | 15 m | https://www.earthdata.nasa.gov/ (accessed on 14 February 2023) |
TanDEM–X | December 2010 to 2015 | 90 m | https://download.geoservice.dlr.de/TDM90/ (accessed on 3 April 2023) |
ICESat–2 | 5 January 2019–28 December 2022 | ~17 m (along track) | https://www.earthdata.nasa.gov/ (accessed on 28 September 2023) |
Randolph Glacier Inventory 6.0 | 28 July 2017 | – | https://www.glims.org/RGI/ (accessed on 3 April 2023) |
ERA 5 | January 2002–December 2023 | 31 km | https://psl.noaa.gov/data/atmoswrit/timeseries (accessed on 26 February 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Yang, Y.; Li, L.; Wang, Q.; Guo, M. Elevation Changes of A’nyemaqen Snow Mountain Revealed with Satellite Remote Sensing. Remote Sens. 2024, 16, 2446. https://doi.org/10.3390/rs16132446
Lin H, Yang Y, Li L, Wang Q, Guo M. Elevation Changes of A’nyemaqen Snow Mountain Revealed with Satellite Remote Sensing. Remote Sensing. 2024; 16(13):2446. https://doi.org/10.3390/rs16132446
Chicago/Turabian StyleLin, Huai, Yuande Yang, Leiyu Li, Qihua Wang, and Minyi Guo. 2024. "Elevation Changes of A’nyemaqen Snow Mountain Revealed with Satellite Remote Sensing" Remote Sensing 16, no. 13: 2446. https://doi.org/10.3390/rs16132446
APA StyleLin, H., Yang, Y., Li, L., Wang, Q., & Guo, M. (2024). Elevation Changes of A’nyemaqen Snow Mountain Revealed with Satellite Remote Sensing. Remote Sensing, 16(13), 2446. https://doi.org/10.3390/rs16132446