CGMNet: Semantic Change Detection via a Change-Aware Guided Multi-Task Network
Abstract
:1. Introduction
- We have developed a change-aware guided multi-task network (CGMNet) specifically tailored to SCD. CGMNet effectively harnesses change-aware information, enabling heightened focus on altered regions and facilitating more accurate land cover classification.
- In order to address the challenges posed by remote sensing images with extensive imaging ranges and intricate details, we designed a global and local attention mechanism (GLAM). This mechanism is adept at capturing both the overarching global features and the fine-grained details inherent in remote sensing images.
- We executed a series of comparative and ablation studies using two publicly accessible datasets. The results from these experiments clearly demonstrate the superior performance and effectiveness of our proposed network and its components.
2. Related Work
2.1. Binary Change Detection
2.2. Semantic Change Detection
3. Methodology
3.1. The Overall Architecture of CGMNet
3.2. Dual Temporal Feature Fusion
3.3. Change-Aware Mask Branch
3.4. Loss Function
4. Experiment and Analysis
4.1. Dataset
4.2. Evaluation Metrics
4.3. Training Details
4.4. Performance Evaluation
4.4.1. Comparison Methods
4.4.2. Quantitative Comparison
4.4.3. Qualitative Comparison
4.5. Ablation Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Q.; Shao, Z.; Huang, X.; Altan, O. DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102591. [Google Scholar] [CrossRef]
- Wang, R.; Wu, H.; Qiu, H.; Wang, F.; Liu, X.; Cheng, X. A Difference Enhanced Neural Network for Semantic Change Detection of Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5509205. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, X.; Li, Z.; Li, D. A review of multi-class change detection for satellite remote sensing imagery. Geo-Spat. Inf. Sci. 2024, 27, 1–15. [Google Scholar] [CrossRef]
- Fang, S.; Li, K.; Li, Z. Changer: Feature interaction is what you need for change detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5610111. [Google Scholar] [CrossRef]
- Cui, F.; Jiang, J. MTSCD-Net: A network based on multi-task learning for semantic change detection of bitemporal remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103294. [Google Scholar] [CrossRef]
- Ru, L.; Du, B.; Wu, C. Multi-temporal scene classification and scene change detection with correlation based fusion. IEEE Trans. Image Process. 2020, 30, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, H.; Ning, X.; Zhang, R.; Chang, D.; Hao, M. Spatial-temporal semantic perception network for remote sensing image semantic change detection. Remote Sens. 2023, 15, 4095. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhong, Y.; Wang, J.; Ma, A.; Zhang, L. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters. Remote Sens. Environ. 2021, 265, 112636. [Google Scholar] [CrossRef]
- Xia, H.; Tian, Y.; Zhang, L.; Li, S. A deep Siamese postclassification fusion network for semantic change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5622716. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised change detection in VHR images using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 77–85. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Du, B. Kernel slow feature analysis for scene change detection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2367–2384. [Google Scholar] [CrossRef]
- Tu, J.; Li, D.; Feng, W.; Han, Q.; Sui, H. Detecting damaged building regions based on semantic scene change from multi-temporal high-resolution remote sensing images. ISPRS Int. J. Geo-Inf. 2017, 6, 131. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Z.; Lu, T.; Wang, J.; Cheng, G.; Zuo, X.; Dang, C. Remote Sensing Pan-sharpening via Cross Spectral-Spatial Fusion Network. IEEE Geosci. Remote Sens. Lett. 2023, 21, 5000105. [Google Scholar] [CrossRef]
- Wang, J.; Lu, T.; Huang, X.; Zhang, R.; Feng, X. Pan-sharpening via conditional invertible neural network. Inf. Fusion 2024, 101, 101980. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Z.; Lu, T.; Liu, L.; Huang, X.; Wang, J.; Jiang, K.; Zeng, K. A lightweight distillation CNN-transformer architecture for remote sensing image super-resolution. Int. J. Digit. Earth 2023, 16, 3560–3579. [Google Scholar] [CrossRef]
- Zuo, X.; Shao, Z.; Wang, J.; Huang, X.; Wang, Y. A cross-stage features fusion network for building extraction from remote sensing images. Geo-Spat. Inf. Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Bai, T.; Wang, L.; Yin, D.; Sun, K.; Chen, Y.; Li, W.; Li, D. Deep learning for change detection in remote sensing: A review. Geo-Spat. Inf. Sci. 2023, 26, 262–288. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Multitask learning for large-scale semantic change detection. Comput. Vis. Image Underst. 2019, 187, 102783. [Google Scholar] [CrossRef]
- Ding, L.; Guo, H.; Liu, S.; Mou, L.; Zhang, J.; Bruzzone, L. Bi-temporal semantic reasoning for the semantic change detection in HR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5620014. [Google Scholar] [CrossRef]
- Niu, Y.; Guo, H.; Lu, J.; Ding, L.; Yu, D. SMNet: Symmetric Multi-Task Network for Semantic Change Detection in Remote Sensing Images Based on CNN and Transformer. Remote Sens. 2023, 15, 949. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, X.; Deng, W.; Shi, S.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Land-use/land-cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 63–78. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Duan, C.; Wang, L.; Zhang, C. Land cover classification from remote sensing images based on multi-scale fully convolutional network. Geo-Spat. Inf. Sci. 2022, 25, 278–294. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, H.; Ning, X.; Huang, X.; Wang, J.; Cui, W. Global-aware siamese network for change detection on remote sensing images. ISPRS J. Photogramm. Remote Sens. 2023, 199, 61–72. [Google Scholar] [CrossRef]
- Ke, L.; Lin, Y.; Zeng, Z.; Zhang, L.; Meng, L. Adaptive change detection with significance test. IEEE Access 2018, 6, 27442–27450. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, X.; Zhang, L. Fault-tolerant building change detection from urban high-resolution remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1060–1064. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Zhu, T. Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 105–115. [Google Scholar] [CrossRef]
- Ye, S.; Chen, D.; Yu, J. A targeted change-detection procedure by combining change vector analysis and post-classification approach. ISPRS J. Photogramm. Remote Sens. 2016, 114, 115–124. [Google Scholar] [CrossRef]
- Zhuang, H.; Deng, K.; Fan, H.; Yu, M. Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 681–685. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, B.; Gao, J.; Huang, E.; Chen, H. Adaptive polygon generation algorithm for automatic building extraction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4702114. [Google Scholar] [CrossRef]
- Ding, Q.; Shao, Z.; Huang, X.; Altan, O.; Hu, B. Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103001. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, Z.; Cheng, G.; Huang, X.; Wang, Z. Road and car extraction using UAV images via efficient dual contextual parsing network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5632113. [Google Scholar] [CrossRef]
- Shao, Z.; Cheng, G.; Ma, J.; Wang, Z.; Wang, J.; Li, D. Real-time and accurate UAV pedestrian detection for social distancing monitoring in COVID-19 pandemic. IEEE Trans. Multimed. 2021, 24, 2069–2083. [Google Scholar] [CrossRef] [PubMed]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th IEEE International Conference On Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4063–4067. [Google Scholar]
- Zheng, Z.; Wan, Y.; Zhang, Y.; Xiang, S.; Peng, D.; Zhang, B. CLNet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 247–267. [Google Scholar] [CrossRef]
- Lei, T.; Wang, J.; Ning, H.; Wang, X.; Xue, D.; Wang, Q.; Nandi, A.K. Difference enhancement and spatial–spectral nonlocal network for change detection in VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4507013. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, Z.; Ding, Q.; Huang, X.; Wang, Y.; Zhou, X.; Li, D. AERNet: An attention-guided edge refinement network and a dataset for remote sensing building change detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5617116. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Bandara, W.G.C.; Patel, V.M. A transformer-based siamese network for change detection. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 207–210. [Google Scholar]
- Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5607514. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A survey on deep learning-based change detection from high-resolution remote sensing images. Remote Sens. 2022, 14, 1552. [Google Scholar] [CrossRef]
- Gao, S.; Li, W.; Sun, K.; Wei, J.; Chen, Y.; Wang, X. Built-up area change detection using multi-task network with object-level refinement. Remote Sens. 2022, 14, 957. [Google Scholar] [CrossRef]
- Yang, K.; Xia, G.S.; Liu, Z.; Du, B.; Yang, W.; Pelillo, M.; Zhang, L. Asymmetric siamese networks for semantic change detection in aerial images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5609818. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhong, Y.; Tian, S.; Ma, A.; Zhang, L. ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection. ISPRS J. Photogramm. Remote Sens. 2022, 183, 228–239. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Ding, J.; Liu, B.; Weng, N.; Xiao, H. SIGNet: A Siamese graph convolutional network for multi-class urban change detection. Remote Sens. 2023, 15, 2464. [Google Scholar] [CrossRef]
- Yuan, P.; Zhao, Q.; Zhao, X.; Wang, X.; Long, X.; Zheng, Y. A transformer-based Siamese network and an open optical dataset for semantic change detection of remote sensing images. Int. J. Digit. Earth 2022, 15, 1506–1525. [Google Scholar] [CrossRef]
- Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
Methods | Accuracy | Computational Costs | |||||
---|---|---|---|---|---|---|---|
mIoU (%) | F1-Score (%) | SeK (%) | Overall Score (%) | Params (Mb) | FLOPs (Gbps) | Infer. Time (s/100e) | |
CLNet | 77.94 | 78.53 | - | - | 8.10 | 34.63 | - |
BIT | 82.34 | 83.40 | - | - | 3.04 | 34.93 | - |
DESSN | 78.50 | 79.21 | - | - | 19.35 | 147.21 | - |
AERNet | 85.19 | 86.42 | - | - | 25.36 | 51.27 | - |
HRSCD3 | 82.22 | 82.22 | 38.53 | 51.64 | 12.77 | 42.94 | 6.53 |
HRSCD4 | 82.29 | 83.62 | 38.01 | 51.30 | 13.71 | 43.97 | 6.52 |
SSCDl | 82.75 | 84.11 | 40.42 | 53.13 | 23.31 | 189.76 | 2.08 |
BiSRNet | 84.89 | 86.20 | 46.67 | 58.13 | 23.39 | 190.30 | 2.32 |
Ours | 85.24 | 86.52 | 47.43 | 58.77 | 24.45 | 196.86 | 3.23 |
Methods | Accuracy | Computational Costs | |||||
---|---|---|---|---|---|---|---|
mIoU (%) | F1-Score (%) | SeK (%) | Overall Score (%) | Params (Mb) | FLOPs (Gbps) | Infer. Time (s/100e) | |
CLNet | 66.21 | 64.94 | - | - | 8.10 | 34.63 | - |
BIT | 70.31 | 70.32 | - | - | 3.04 | 34.93 | - |
DESSN | 69.54 | 69.26 | - | - | 19.35 | 147.21 | - |
AERNet | 70.63 | 70.99 | - | - | 25.36 | 51.27 | - |
HRSCD3 | 68.84 | 69.04 | 16.61 | 32.28 | 12.77 | 42.94 | 6.53 |
HRSCD4 | 72.13 | 73.25 | 20.27 | 35.83 | 13.71 | 43.97 | 6.52 |
SSCDl | 72.33 | 73.01 | 21.29 | 36.60 | 23.31 | 189.76 | 2.08 |
BiSRNet | 72.34 | 73.11 | 21.00 | 36.40 | 23.39 | 190.30 | 2.32 |
Ours | 72.69 | 73.59 | 21.79 | 37.06 | 24.45 | 196.86 | 3.23 |
Methods | mIoU (%) | F1-Score (%) | SeK (%) | Overall Score (%) | Params (Mb) |
---|---|---|---|---|---|
Base | 81.67 | 82.75 | 37.87 | 51.01 | 23.33 |
Base + GLAM | 84.77 | 86.11 | 46.12 | 57.72 | 23.40 |
Base + GLAM + Branch | 85.24 | 86.52 | 47.43 | 58.77 | 23.45 |
Methods | mIoU (%) | F1-Score (%) | SeK (%) | Overall Score (%) | Params (Mb) |
---|---|---|---|---|---|
Base | 72.39 | 73.17 | 20.76 | 36.25 | 23.33 |
Base + GLAM | 72.42 | 73.20 | 21.03 | 36.45 | 23.40 |
Base + GLAM + Branch | 72.69 | 73.59 | 21.79 | 37.06 | 23.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Zuo, X.; Cheng, X. CGMNet: Semantic Change Detection via a Change-Aware Guided Multi-Task Network. Remote Sens. 2024, 16, 2436. https://doi.org/10.3390/rs16132436
Tan L, Zuo X, Cheng X. CGMNet: Semantic Change Detection via a Change-Aware Guided Multi-Task Network. Remote Sensing. 2024; 16(13):2436. https://doi.org/10.3390/rs16132436
Chicago/Turabian StyleTan, Li, Xiaolong Zuo, and Xi Cheng. 2024. "CGMNet: Semantic Change Detection via a Change-Aware Guided Multi-Task Network" Remote Sensing 16, no. 13: 2436. https://doi.org/10.3390/rs16132436
APA StyleTan, L., Zuo, X., & Cheng, X. (2024). CGMNet: Semantic Change Detection via a Change-Aware Guided Multi-Task Network. Remote Sensing, 16(13), 2436. https://doi.org/10.3390/rs16132436