A Framework Analyzing Climate Change, Air Quality and Greenery to Unveil Environmental Stress Risk Hotspots
Abstract
:1. Introduction
- We design an environmental stress framework to incorporate multiple environmental stress criteria by computing rarely explored indices for each criterion and analyzing their temporal trend;
- We compute the preference weights using a decision-making framework that involves breaking down a complex decision into a hierarchical structure of criteria;
- We establish a correlation between environmental stress and vegetation and calculate the hotspots of environmental risk by considering factors such as stress severity, exposure, vulnerability and the criticality of vegetation status.
2. Study Area and Dataset Used
2.1. Study Area
2.2. Datasets Used
3. Proposed Methodology
3.1. Quantification of Environmental Stress Severity
3.1.1. Surface Thermal Trend
3.1.2. Atmospheric Air Quality
3.1.3. Computing Heat Index
3.1.4. Analytic Hierarchy Process and Consistency Check
- The weight vector w as the principal eigenvector of A was computed;
- The consistency index (CI) using the formula
- The Random Index (RI) value corresponding to n was taken from the predefined table of RI values;
- The consistency ratio (CR) as
3.2. Exposure and Vulnerability Analysis
3.3. Vegetation-Based Criticality Analysis
3.4. Identification of Critical Environment Risk Hotspot and Ranking of Province
4. Results and Discussions
4.1. Consistency Check: Assigned Weights
4.2. Thermal and Air Quality-Based Environmental Stress Magnitude
4.2.1. Surface Urban Heat Island Intensity Analysis
4.2.2. Air Quality Index (AQI) Assessment
4.2.3. Heat Index Analysis
4.3. EVI and Its Correlation with Environment-Risk Magnitude Variables
4.4. Cumulative Environmental Stress Magnitude, Settlement Exposure, Population Vulnerability and Vegetation-Based Criticality
4.5. Risk Hotspot Mapping and Province Ranking
5. Conclusions
Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Song, W.; Sun, Q. Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16007. [Google Scholar] [CrossRef]
- Pawlewicz, A.; Pawlewicz, K. The Risk of Agricultural Land Abandonment as a Socioeconomic Challenge for the Development of Agriculture in the European Union. Sustainability 2023, 15, 3233. [Google Scholar] [CrossRef]
- EU. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Working paper; European Union: Maastricht, The Netherlands, 2023. [Google Scholar]
- Vizzari, M.; Hilal, M.; Sigura, M.; Antognelli, S.; Joly, D. Urban-rural-natural gradient analysis with CORINE data: An application to the metropolitan France. Landsc. Urban Plan. 2018, 171, 18–29. [Google Scholar] [CrossRef]
- Galan, J.; Galiana, F.; Kotze, D.J.; Lynch, K.; Torreggiani, D.; Pedroli, B. Landscape adaptation to climate change: Local networks, social learning and co-creation processes for adaptive planning. Glob. Environ. Chang. 2023, 78, 102627. [Google Scholar] [CrossRef]
- Rao, P.; Tassinari, P.; Torreggiani, D. Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data. Heliyon 2023, 9, e18423. [Google Scholar] [CrossRef]
- Kalisa, E.; Fadlallah, S.; Amani, M.; Nahayo, L.; Habiyaremye, G. Temperature and air pollution relationship during heatwaves in Birmingham, UK. Sustain. Cities Soc. 2018, 43, 111–120. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, H.; Zhe, F.; Xie, W.; Song, J. Study on the relationship between urbanization and fine particulate matter (PM2.5) concentration and its implication in China. J. Clean. Prod. 2018, 182, 872–882. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Piracha, A.; Chaudhary, M.T. Urban air pollution, urban heat island and human health: A review of the literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Heaviside, C.; Vardoulakis, S.; Cai, X.M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health 2016, 15, 49–59. [Google Scholar] [CrossRef]
- Jabbar, H.K.; Hamoodi, M.N.; Al-Hameedawi, A.N. Urban heat islands: A review of contributing factors, effects and data. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1129, p. 012038. [Google Scholar]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Analitis, A.; Michelozzi, P.; D’Ippoliti, D.; de’Donato, F.; Menne, B.; Matthies, F.; Atkinson, R.W.; Iñiguez, C.; Basagaña, X.; Schneider, A.; et al. Effects of heat waves on mortality: Effect modification and confounding by air pollutants. Epidemiology 2014, 25, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Deng, X.; Yang, H.; Li, S. Spatial evolution of the effects of urban heat island on residents’ health. Tehnički Vjesnik 2020, 27, 1427–1435. [Google Scholar]
- Orru, H.; Ebi, K.; Forsberg, B. The interplay of climate change and air pollution on health. Curr. Environ. Health Rep. 2017, 4, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Alcock, I.; White, M.; Cherrie, M.; Wheeler, B.; Taylor, J.; McInnes, R.; Im Kampe, E.O.; Vardoulakis, S.; Sarran, C.; Soyiri, I.; et al. Land cover and air pollution are associated with asthma hospitalisations: A cross-sectional study. Environ. Int. 2017, 109, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Calia, G.; Ledda, A.; Serra, V.; Senes, G.; De Montis, A. GI Guidelines for the Metropolitan City of Cagliari (Italy): A Method for Implementing Green Areas. Appl. Sci. 2021, 11, 10863. [Google Scholar] [CrossRef]
- Beute, F.; Marselle, M.R.; Olszewska-Guizzo, A.; Andreucci, M.; Lammel, A.; Davies, Z.G.; Glanville, J.; Keune, H.; O’Brien, L.; Remmen, R.; et al. How do different types and characteristics of green space impact mental health? A scoping review. People Nat. 2023, 5, 1839–1876. [Google Scholar] [CrossRef]
- Menconi, M.; Abbate, R.; Simone, L.; Grohmann, D. Urban Green System Planning Insights for a Spatialized Balance between PM10 Dust Retention Capacity of Trees and Urban Vehicular PM10 Emissions. Sustainability 2023, 15, 5888. [Google Scholar] [CrossRef]
- Choudhury, M.A.M.; Marcheggiani, E.; Galli, A.; Modica, G.; Somers, B. Mapping the urban atmospheric carbon stock by lidar and worldview-3 data. Forests 2021, 12, 692. [Google Scholar] [CrossRef]
- Castelo, S.; Amado, M.; Ferreira, F. Challenges and Opportunities in the Use of Nature-Based Solutions for Urban Adaptation. Sustainability 2023, 15, 7243. [Google Scholar] [CrossRef]
- Dardir, M.; Wilson, J.; Berardi, U. Heat and air quality related cause-based elderly mortalities and emergency visits. Environ. Res. 2023, 216, 114640. [Google Scholar] [CrossRef]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- de Almeida, A.T.; Alencar, M.H.; Garcez, T.V.; Ferreira, R.J.P. A systematic literature review of multicriteria and multi-objective models applied in risk management. IMA J. Manag. Math. 2017, 28, 153–184. [Google Scholar] [CrossRef]
- Lyu, H.M.; Yin, Z.Y. An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong. Sustain. Cities Soc. 2023, 91, 104427. [Google Scholar] [CrossRef]
- Lyu, H.M.; Yin, Z.Y.; Zhou, A.; Shen, S.L. MCDM-based flood risk assessment of metro systems in smart city development: A review. Environ. Impact Assess. Rev. 2023, 101, 107154. [Google Scholar] [CrossRef]
- Zheng, Q.; Shen, S.L.; Zhou, A.; Lyu, H.M. Inundation risk assessment based on G-DEMATEL-AHP and its application to Zhengzhou flooding disaster. Sustain. Cities Soc. 2022, 86, 104138. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Uva, G.; Fatiguso, F. Optimized AHP to overcome limits in weight calculation: Building performance application. J. Constr. Eng. Manag. 2018, 144, 04017101. [Google Scholar] [CrossRef]
- Almeida, C.R.d.; Teodoro, A.C.; Gonçalves, A. Study of the urban heat island (UHI) using remote sensing data/techniques: A systematic review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Wu, H.; Huang, B.; Zheng, Z.; Sun, R.; Hu, D.; Zeng, Y. Urban anthropogenic heat index derived from satellite data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103261. [Google Scholar] [CrossRef]
- Rao, P.; Singh, A.; Pandey, K. Time-series analysis of open data for studying urban heat island phenomenon: A geospatial approach. Spat. Inf. Res. 2021, 29, 907–918. [Google Scholar] [CrossRef]
- Bell, S.L.; Phoenix, C.; Lovell, R.; Wheeler, B.W. Green space, health and wellbeing: Making space for individual agency. Health Place 2014, 30, 287–292. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Nistor, M.M. Spatial distribution of climate indices in the Emilia-Romagna region. Meteorol. Appl. 2016, 23, 304–313. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Balan, R.; Rao, P.; Gupta, K.; Roy, A.; Open Source Google Earth Platform for Computation of Heat Wave Indicators. Paper Presented at Free and Open Source Software for Geospatial (FOSS4G) 2020. 2020. Available online: https://www.researchgate.net/publication/353400581_Open_Source_Google_Earth_Platform_for_Computation_of_Heat_Wave_Indicators (accessed on 15 November 2023).
- Rao, P.; Gupta, K.; Roy, A.; Balan, R. Spatio-temporal analysis of land surface temperature for identification of heat wave risk and vulnerability hotspots in Indo-Gangetic Plains of India. Theor. Appl. Climatol. 2021, 146, 567–582. [Google Scholar] [CrossRef]
- Nieves, J.J.; Bondarenko, M.; Kerr, D.; Ves, N.; Yetman, G.; Sinha, P.; Clarke, D.J.; Sorichetta, A.; Stevens, F.R.; Gaughan, A.E.; et al. Measuring the contribution of built-settlement data to global population mapping. Soc. Sci. Humanit. Open 2021, 3, 100102. [Google Scholar] [CrossRef]
- Bondarenko, M.; Kerr, D.; Sorichetta, A.; Tatem, A.; WorldPop. Estimates of 2020 Total Number of People per Grid Square, Adjusted to Match the Corresponding UNPD 2020 Estimates and Broken down by Gender and Age Groupings, Produced Using Built-Settlement Growth Model (BSGM) Outputs; University of Southampton: Southampton, UK, 2020. [Google Scholar]
- Demuzere, M.; Kittner, J.; Martilli, A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of Local Climate Zones to support earth system modelling and urban scale environmental science. Earth Syst. Sci. Data Discuss. 2022, 2022, 1–57. [Google Scholar] [CrossRef]
- Fever, S.K.; Kahl, J.D.; Kalkbrenner, A.E.; Cerón Bretón, R.M.; Cerón Bretón, J.G. A New Combined Air Quality and Heat Index in Relation to Mortality in Monterrey, Mexico. Int. J. Environ. Res. Public Health 2022, 19, 3299. [Google Scholar] [CrossRef]
- Xu, H.; Brook, R.D.; Wang, T.; Song, X.; Feng, B.; Yi, T.; Liu, S.; Wu, R.; Chen, J.; Zhang, Y.; et al. Short-term effects of ambient air pollution and outdoor temperature on biomarkers of myocardial damage, inflammation and oxidative stress in healthy adults. Environ. Epidemiol. 2019, 3, e078. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- WMO. Global Warming of 1.5 °C; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Chen, B.; Xie, M.; Feng, Q.; Li, Z.; Chu, L.; Liu, Q. Heat risk of residents in different types of communities from urban heat-exposed areas. Sci. Total Environ. 2021, 768, 145052. [Google Scholar] [CrossRef]
- Lopez-Bueno, J.A.; Díaz, J.; Sánchez-Guevara, C.; Sánchez-Martínez, G.; Franco, M.; Gullón, P.; Peiró, M.N.; Valero, I.; Linares, C. The impact of heat waves on daily mortality in districts in Madrid: The effect of sociodemographic factors. Environ. Res. 2020, 190, 109993. [Google Scholar] [CrossRef]
- Fischer, P.H.; Brunekreef, B.; Lebret, E. Air pollution related deaths during the 2003 heat wave in the Netherlands. Atmos. Environ. 2004, 38, 1083–1085. [Google Scholar] [CrossRef]
- Van Ryswyk, K.; Prince, N.; Ahmed, M.; Brisson, E.; Miller, J.D.; Villeneuve, P.J. Does urban vegetation reduce temperature and air pollution concentrations? Findings from an environmental monitoring study of the Central Experimental Farm in Ottawa, Canada. Atmos. Environ. 2019, 218, 116886. [Google Scholar] [CrossRef]
- Jain, S.; Sannigrahi, S.; Sen, S.; Bhatt, S.; Chakraborti, S.; Rahmat, S. Urban heat island intensity and its mitigation strategies in the fast-growing urban area. J. Urban Manag. 2020, 9, 54–66. [Google Scholar] [CrossRef]
- Melaas, E.K.; Wang, J.A.; Miller, D.L.; Friedl, M.A. Interactions between urban vegetation and surface urban heat islands: A case study in the Boston metropolitan region. Environ. Res. Lett. 2016, 11, 054020. [Google Scholar] [CrossRef]
- Semenzato, P.; Bortolini, L. Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy). Land 2023, 12, 476. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Assessing the Contributions of Urban Green Space Indices and Spatial Structure in Mitigating Urban Thermal Environment. Remote. Sens. 2023, 15, 2414. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method. Remote. Sens. 2019, 11, 2725. [Google Scholar] [CrossRef]
Dataset Used | Spatial Resolution | Time Period (Summer Months) | Source/Data Code |
---|---|---|---|
MODIS Aqua LST and Emissivity Daily Global | 1 km | 2002–2022 | MODIS_061_MYD11A1 |
Copernicus CORINE Land Cover | 100 m | 2000, 2006, 2012, 2018 | CORINE |
Air Quality Parameters | Point station | 2020–2022 | AQICN |
Meteorological Parameters (T2 and RH) | Point station | 2020–2022 | Dexter |
Built Settlement Extents | 100 m | 2020 | [41] |
Population Demographics | 100 m | 2020 | [42] |
Aqua Vegetation Indices 16-Day | 250 m | 2002–2022 | MODIS_061_MYD13Q1 |
LCZ | 100 m | 2018 | [43] |
Parameter/Index | Description | AHP Assigned Weights |
---|---|---|
Surface thermal parameters | ||
SUHII_Day | SUHII calculated using daytime LST | 0.16 |
SUHII_Night | SUHII calculated using night-time LST | 0.25 |
SUHII_DTR | Difference between SUHII_Day and SUHII_Night | 0.59 |
Air quality parameters | ||
AQI_PM2.5 | AQI level of | 0.56 |
AQI_PM10 | AQI level of | 0.11 |
AQI_NO2 | AQI level of | 0.05 |
AQI_O3 | AQI level of | 0.28 |
HI indicators | ||
HI_Avg | Average HI | 0.07 |
HI_Max | Maximum HI in studied time period | 0.06 |
Cum.HI_Intensity | Total HI intensity above threshold (HI > 27 °C) | 0.28 |
Cum.HI_Frequency | Total days when HI was above threshold (≥27 °C) | 0.46 |
Diff._T2 and HI | Difference between air temperature and HI | 0.13 |
Risk Parameters | Bologna | Parma | Modena | ReggioNellEmilia | Ravenna | Rimini | Ferrara | ForliCesena | Piacenza |
---|---|---|---|---|---|---|---|---|---|
High Magnitude (80–100) | 5 | 1 | 2 | 4 | 0 | 0 | 3 | 0 | 6 |
Settlement Exposure | 7 | 2 | 6 | 4 | 4 | 5 | 2 | 3 | 1 |
Population Vulnerability | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Vegetation_Criticality (BGR) | 4 | 1 | 3 | 3 | 6 | 7 | 1 | 5 | 2 |
Total score | 18 | 4 | 12 | 11 | 10 | 12 | 6 | 8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, P.; Tassinari, P.; Torreggiani, D. A Framework Analyzing Climate Change, Air Quality and Greenery to Unveil Environmental Stress Risk Hotspots. Remote Sens. 2024, 16, 2420. https://doi.org/10.3390/rs16132420
Rao P, Tassinari P, Torreggiani D. A Framework Analyzing Climate Change, Air Quality and Greenery to Unveil Environmental Stress Risk Hotspots. Remote Sensing. 2024; 16(13):2420. https://doi.org/10.3390/rs16132420
Chicago/Turabian StyleRao, Priyanka, Patrizia Tassinari, and Daniele Torreggiani. 2024. "A Framework Analyzing Climate Change, Air Quality and Greenery to Unveil Environmental Stress Risk Hotspots" Remote Sensing 16, no. 13: 2420. https://doi.org/10.3390/rs16132420
APA StyleRao, P., Tassinari, P., & Torreggiani, D. (2024). A Framework Analyzing Climate Change, Air Quality and Greenery to Unveil Environmental Stress Risk Hotspots. Remote Sensing, 16(13), 2420. https://doi.org/10.3390/rs16132420