A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality
Abstract
:1. Introduction
2. Materials and Methods
- The root mean square error (RMSE) is computed as:
- 2.
- The R-squared measures the discrepancy between the predicted and actual values. The equation is given by
- 3.
- The mean absolute percentage error (MAPE) indicates the absolute amount of error for predicted outcomes when compared to the actual values in a series [23].
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics Canada. Estimates of Sod Area, Sales and Resales. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210003401 (accessed on 3 January 2024).
- Barton, L.; Wan, G.G.Y.; Colmer, T.D. Turfgrass (Cynodon dactylon L.) sod production on sandy soils: I. Effects of irrigation and fertilizer regimes on growth and quality. Plant Soil. 2006, 284, 129–145. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.; Meng, X.; Pang, Y.; Agca, M. Characterizing forest canopy structure with LiDAR composite metrics and machine learning. Remote Sens. Environ. 2011, 115, 1978–1996. [Google Scholar] [CrossRef]
- Schaefer, M.; Lamb, D. A combination of plant NDVI and LiDAR measurements improve the estimation of pasture biomass in tall fescue (Festuca arundinacea var. Fletcher). Remote Sens. 2016, 8, 109. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, X.; Lawes, R.; Dunkerley, D.; Zhang, H. Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure. Int. J. Remote Sens. 2019, 40, 5973–5991. [Google Scholar] [CrossRef]
- Carey, K.; Powers, J.E.; Ficht, A.; Dance, T.; Gharabaghi, B.; Lyons, E.M. Novel Curve Fitting Analysis of NDVI Data to Describe Turf Fertilizer Response. Agriculture 2023, 13, 1532. [Google Scholar] [CrossRef]
- Xu, J.X.; Ma, J.; Tang, Y.N.; Wu, W.X.; Shao, J.H.; Wu, W.B.; Wei, S.Y.; Liu, Y.F.; Wang, Y.C.; Guo, H.Q. Estimation of sugarcane yield using a machine learning approach based on UAV-LiDAR data. Remote Sens. 2020, 12, 2823. [Google Scholar] [CrossRef]
- Kang, B.; Choi, S. Pothole detection system using 2D LiDAR and camera. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 744–746. [Google Scholar]
- ten Harkel, J.; Bartholomeus, H.; Kooistra, L. Biomass and crop height estimation of different crops using UAV-based LiDAR. Remote Sens. 2020, 12, 17. [Google Scholar] [CrossRef]
- Mo, Y.; Zhong, R.; Sun, H.; Wu, Q.; Du, L.; Geng, Y.; Cao, S. Integrated airborne LiDAR data and imagery for suburban land cover classification using machine learning methods. Sensors 2019, 19, 1996. [Google Scholar] [CrossRef]
- Liu, S.; Baret, F.; Abichou, M.; Boudon, F.; Thomas, S.; Zhao, K.; Fournier, C.; Andrieu, B.; Irfan, K.; Hemmerlé, M.; et al. Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model. Agric. For. Meteorol. 2017, 247, 12–20. [Google Scholar] [CrossRef]
- Jin, S.; Su, Y.; Song, S.; Xu, K.; Hu, T.; Yang, Q.; Wu, F.; Xu, G.; Ma, Q.; Guan, H.; et al. Non-destructive estimation of field maize biomass using terrestrial lidar: An evaluation from plot level to individual leaf level. Plant Methods 2020, 16, 69. [Google Scholar] [CrossRef]
- Fareed, N.; Das, A.K.; Flores, J.P.; Mathew, J.J.; Mukaila, T.; Numata, I.; Janjua, U.U.R. UAS Quality Control and Crop Three-Dimensional Characterization Framework Using Multi-Temporal LiDAR Data. Remote Sens. 2024, 16, 699. [Google Scholar] [CrossRef]
- Abdelmajeed, A.Y.A.; Juszczak, R. Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sens. 2024, 16, 591. [Google Scholar] [CrossRef]
- Fricke, T.; Richter, F.; Wachendorf, M. Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor. Comput. Electron. Agric. 2011, 79, 142–152. [Google Scholar] [CrossRef]
- Rennie, G.M.; King, W.M.; Puha, M.R.; Dalley, D.E.; Dynes, R.A.; Upsdell, M.P. Calibration of the C-DAX rapid pasturemeter and the rising plater meter for kikuyu-based Northland dairy pastures. NZ Grassl. Assoc. 2009, 71, 49–55. [Google Scholar]
- De Rosa, D.; Basso, B.; Fasiolo, M.; Friedl, J.; Fulkerson, B.; Grace, P.R.; Rowlings, D.W. Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery. Comput. Electron. Agric. 2021, 180, 105880. [Google Scholar] [CrossRef]
- Franco, V.R.; Hott, M.C.; Andrade, R.G.; Goliatt, L. Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures. Evol. Intell. 2023, 16, 1271–1284. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine learning in agriculture: A comprehensive updated review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Segarra, J.; Araus, J.L.; Kefauver, S.C. Farming and earth observation: Sentinel-2 data to estimate within-field wheat grain yield. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102697. [Google Scholar] [CrossRef]
- Prayudani, S.; Hizriadi, A.; Lase, Y.Y.; Fatmi, Y.; Al-Khowarizmi. Analysis accuracy of forecasting measurement technique on random k-nearest neighbor (RKNN) using MAPE and MSE. J. Phys. Conf. Ser. 2019, 1361, 012089. [Google Scholar] [CrossRef]
- Kragh, M.; Underwood, J. Multimodal obstacle detection in unstructured environments with conditional random fields. J. Field Robot 2019, 37, 53–72. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Sign, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Obanawa, H.; Yoshitoshi, R.; Watanabe, N.; Sakanoue, S. Portable LiDAR-based method for improvement of grass height measurement accuracy: Comparison with SfM methods. Sensors 2020, 20, 4809. [Google Scholar] [CrossRef]
- Anderson, K.E.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K.; Derryberry, D.R. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial LiDAR and machine learning. Ecol. Indic. 2018, 84, 793–802. [Google Scholar] [CrossRef]
- Nguyen, P.; Badenhorst, P.E.; Shi, F.; Spangenberg, G.C.; Smith, K.F.; Daetwyler, H.D. Design of an unmanned ground vehicle and LiDAR pipeline for the high-throughput phenotyping of biomass in perennial ryegrass. Remote Sens. 2021, 13, 20. [Google Scholar] [CrossRef]
- Sharma, P.; Leigh, L.; Chang, J.; Maimaitijiang, M.; Caffé, M. Above-ground biomass estimation in oats using UAV remote sensing and machine learning. Sensors 2022, 22, 601. [Google Scholar] [CrossRef]
- Sheffield, S.T.; Dvorak, J.; Smith, B.; Arnold, C.; Minch, C. Using LiDAR to measure alfalfa canopy height. Trans. ASABE 2021, 64, 1755–1761. [Google Scholar] [CrossRef]
- Xu, K.; Su, Y.; Liu, J.; Hu, T.; Jin, S.; Ma, Q.; Zhai, Q.; Wang, R.; Zhang, J.; Li, Y.; et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecol. Indic. 2020, 108, 105747. [Google Scholar] [CrossRef]
- Pantazis, A. LIDARs usage in maritime operations and ECO—Autonomous shipping, for protection, safety and navigation for NATO allies awareness. In Maritime Situational Awareness Workshop; CMRE—NATO: La Spezia, Italy, 2019. [Google Scholar]
- Dalponte, M.; Coops, N.C.; Bruzzone, L.; Gianelle, D. Analysis on the use of multiple returns LiDAR data for the estimation of tree stems volume. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 310–318. [Google Scholar] [CrossRef]
- Ussyshkin, V.; Theriault, L. Airborne Lidar: Advances in discrete return technology for 3D vegetation mapping. Remote Sens. 2011, 3, 416–434. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Bhatta, M.; Shi, Y.; Baenziger, P.; Ge, Y. Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors 2018, 18, 3731. [Google Scholar] [CrossRef]
- Neuville, R.; Bates, J.S.; Jonard, F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning. Remote Sens. 2021, 13, 352. [Google Scholar] [CrossRef]
- Luo, S.; Liu, W.; Zhang, Y.; Wang, C.; Xi, X.; Nie, S.; Ma, D.; Lin, Y.; Zhou, G. Maize and soybean heights estimation from unmanned aerial vehicle (UAV) LiDAR data. Comput. Electron. Agric. 2021, 182, 106005. [Google Scholar] [CrossRef]
- Bell, G.E.; Kruse, J.K.; Krum, J.M. The Evolution of Spectral Sensing and Advances in Precision Turfgrass Management. In Turfgrass: Biology, Use, and Management; Stier, J.C., Horgan, B.P., Bonos, S.A., Eds.; Crop Science Society of America: Madison, WI, USA, 2013; pp. 1151–1188. [Google Scholar]
- Tang, J.; Pan, Q.; Chen, Z.; Liu, G.; Yang, G.; Zhu, F.; Lao, S. An improved artificial electric field algorithm for robot path planning. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2292–2304. [Google Scholar] [CrossRef]
Model | R2 | RMSE a | MAPE b |
---|---|---|---|
Random forest | 0.35 | 0.47 | 69.62 |
Non-linear regression | 0.44 | 0.43 | 69.26 |
Authors | Trait Measured | Model | R2 | RMSE a |
---|---|---|---|---|
Anderson et al. (2018) [26] | Perennial grass cover | Random forest | 0.36 | na |
Anderson et al. (2018) [26] | Annual grass cover | Random forest | 0.70 | na |
Nguyen et al. (2021) [27] | Perennial ryegrass biomass | Linear regression | 0.73 | na |
Sharma et al. (2022) [28] Sharma et al. (2022) [28] | Oat biomass Oat biomass | Random forest Support vector machine | 0.30 0.40 | 172.6 g/m2 69.5 g/m2 |
Sheffield et al. (2021) [29] | Alfalfa canopy height | Linear regression | 0.90 | 0.45 mm |
Xu et al. (2020) [30] Xu et al. (2020) [30] Xu et al. (2020) [30] Xu et al. (2020) [30] | Grassland biomass Grassland biomass Grassland biomass Grassland biomass | Simple regression Stepwise multiple regression Random forest Artificial neural network | 0.80 0.84 0.78 0.73 | 86.4 g/m2 48.9 g/m2 68.7 g/m2 101.4 g/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenfield, A.; Ficht, A.; Lyons, E.M.; Gharabaghi, B. A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality. Remote Sens. 2024, 16, 2215. https://doi.org/10.3390/rs16122215
Rosenfield A, Ficht A, Lyons EM, Gharabaghi B. A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality. Remote Sensing. 2024; 16(12):2215. https://doi.org/10.3390/rs16122215
Chicago/Turabian StyleRosenfield, Arthur, Alexandra Ficht, Eric M. Lyons, and Bahram Gharabaghi. 2024. "A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality" Remote Sensing 16, no. 12: 2215. https://doi.org/10.3390/rs16122215
APA StyleRosenfield, A., Ficht, A., Lyons, E. M., & Gharabaghi, B. (2024). A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality. Remote Sensing, 16(12), 2215. https://doi.org/10.3390/rs16122215