Integration of Handheld and Airborne Lidar Data for Dicranopteris Dichotoma Biomass Estimation in a Subtropical Region of Fujian Province, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection and Preprocessing
3.1.1. Field Data Collection and Processing
3.1.2. Collection and Preprocessing of Airborne Laser Scanning (ALS) and Handheld Laser Scanning (HLS) Data
3.1.3. Mapping of Dicranopteris Distribution
3.2. Dicranopteris Biomass Estimation with Handheld Laser Scanning (HLS) Data
3.3. Dicranopteris Biomass Estimation with Airborne Lidar Data
4. Results
4.1. Analysis of Dicranopteris Biomass Estimation at Plot Level Using HLS Data
4.2. Analysis of Dicranopteris Biomass Estimation with ALS Data
5. Discussion
5.1. Impacts of Plot Sizes on Biomass Modeling Performance
5.2. The Important Role of HLS Data as a Bridge for Regional Biomass Estimation Modeling
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, H.; Lin, Q.; Teng, H.; Zhao, Y.; Deng, Y. Analysis on the Growth Regularity of Dicranopteris Dichotoma in Areas of Intensive Soil Erosion. J. Fujian For. Coll. 2004, 24, 262–264. [Google Scholar]
- Liu, Y.; Liu, Q.; Wang, H.; Ma, Z.; Xu, W. Distribution Characteristics of Dicranopteris Dichotoma Biomass. J. Ecol. 2008, 5, 705–711. [Google Scholar]
- Chen, N.; Zhang, Q.; Chen, T.; Yang, Y.; Xie, J. Stoichiometric Characteristics of Nitrogen and Phosphorus in Dicranopreris dichotoma During Ecosystem Restoration of Eroded Red-Soil. For. Res. 2016, 29, 735. [Google Scholar]
- Hou, X.; Han, H.; Tigabu, M.; Cai, L.; Meng, F.; Liu, A.; Ma, X. Changes in Soil Physico-Chemical Properties Following Vegetation Restoration Mediate Bacterial Community Composition and Diversity in Changting, China. Ecol. Eng. 2019, 138, 171–179. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, C.; Yu, J.; Wu, X.; Huang, S.; Yang, F.; Tigabu, M.; Hou, X. Response of Soil Bacteria of Dicranopteris Dichotoma Populations to Vegetation Restoration in Red Soil Region of China. J. Soil Sci. Plant Nutr. 2023, 23, 456–468. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Rao, X.; Wang, X.; Liang, C.; Lin, Y.; Zhou, L.; Cai, X.; Fu, S. Carbon Storage and Allocation Pattern in Plant Biomass among Different Forest Plantation Stands in Guangdong, China. Forests 2015, 6, 794–808. [Google Scholar] [CrossRef]
- Wan, S.; Zhang, C.; Chen, Y.; Zhao, J.; Wang, X.; Wu, J.; Zhou, L.; Lin, Y.; Liu, Z.; Fu, S. The Understory Fern Dicranopteris Dichotoma Facilitates the Overstory Eucalyptus Trees in Subtropical Plantations. Ecosphere 2014, 5, art51. [Google Scholar] [CrossRef]
- Chen, W.; Su, F.; Pang, Z.; Mao, Q.; Zhong, B.; Xiong, Y.; Mo, J.; Lu, X. The Removal of Understory Vegetation Can Rapidly Alter the Soil Microbial Community Structure without Altering the Community Assembly in a Primary Tropical Forest. Geoderma 2023, 429, 116180. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, M.; Jiang, J.; Xie, J. Effects of Dicranopteris Dichotoma on Soil Dissolved Organic Carbon in Severely Eroded Red Soil. Acta Ecol. Sin. 2018, 38, 2288–2298. [Google Scholar]
- Deng, C.; Chen, Z.; Chen, H.; Chen, Z. Hyperspectral Estimation Model of Chlorophyll Content of Dicranopteris Dichotoma under Different Ecological Restoration Years in Changting County in the Red Soil Erosion Area of Southern China. ISPRS Int. J. Geo-Inf. 2019, 21, 948–957. [Google Scholar]
- Yang, L.; Huang, Y.; Lima, L.V.; Sun, Z.; Liu, M.; Wang, J.; Liu, N.; Ren, H. Rethinking The Ecosystem Functions of Dicranopteris, A Widespread Genus of Ferns. Front. Plant Sci. 2021, 11, 581513. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, M.; Yi, L.; Zhang, R.; He, Y. Effects of Light and Nitrogen on Clonal Reproduction Characteristics and Biomass Allocation of Dicranopteris dichotoma. J. Zhejiang A F Univ. 2021, 38, 74–83. [Google Scholar]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods In Forest Ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, C.; Ji, L.; Zuo, Z.; Beckline, M.; Hu, Y.; Li, X.; Xiao, X. Development of Forest Aboveground Biomass Estimation, Its Problems and Future Solutions: A Review. Ecol. Indic. 2024, 159, 111653. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A Review of Radar Remote Sensing for Biomass Estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef]
- Alappat, V.O.; Joshi, A.K.; Krishnamurthy, Y.V.N. Tropical Dry Deciduous Forest Stand Variable Estimation Using SAR data. J. Indian. Soc. Remote Sens. 2011, 39, 583–589. [Google Scholar] [CrossRef]
- Lu, D.; Jiang, X. A brief overview and perspective of using airborne lidar data for forest biomass estimation. Int. J. Image Data Fus. 2024, 15, 1–24. [Google Scholar] [CrossRef]
- Akay, A.E.; Oğuz, H.; Karas, I.R.; Aruga, K. Using LiDAR Technology in Forestry Activities. Environ. Monit. Assess. 2009, 151, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Su, Y.; Sun, X.; Xu, G.; Li, W.; Ma, Q.; Wu, X.; Wu, J.; Liu, L.; Guo, Q. A Marker-Free Method for Registering Multi-Scan Terrestrial Laser Scanning Data in Forest Environments. ISPRS J. Photogramm. Remote Sens. 2020, 166, 82–94. [Google Scholar] [CrossRef]
- Reich, K.F.; Kunz, M.; Von Oheimb, G. A New Index of Forest Structural Heterogeneity Using Tree Architectural Attributes Measured by Terrestrial Laser Scanning. Ecol. Indic. 2021, 133, 108412. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Slavík, M. 3D Point Cloud Fusion from UAV and TLS to Assess Temperate Managed Forest Structures. Int. J. Appl. Earth Obs. 2022, 112, 102917. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T. Lidar Principles, Processing and Applications in Forest Ecology; Higher Education Press: Beijing, China, 2018; (In Chinese). ISBN 9787040493016. [Google Scholar]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical Analysis of Root: Shoot Ratios in Terrestrial Biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidlines for National Greenhouse Gas Inventories; IPCC National Greenhouse Gas Inventories Programme: Hayama, Japan, 2019; Volume 4. [Google Scholar]
- Reich, P.B.; Luo, Y.; Bradford, J.B.; Poorter, H.; Perry, C.H.; Oleksyn, J. Temperature Drives Global Patterns in Forest Biomass Distribution in Leaves, Stems, and Roots. Proc. Natl. Acad. Sci. USA 2014, 111, 13721–13726. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Heijmans, M.M.P.D.; Mommer, L.; Van Ruijven, J.; Maximov, T.C.; Berendse, F. Belowground Plant Biomass Allocation in Tundra Ecosystems and Its Relationship with Temperature. Environ. Res. Lett. 2016, 11, 055003. [Google Scholar] [CrossRef]
- Ma, H.; Mo, L.; Crowther, T.W.; Maynard, D.S.; Van Den Hoogen, J.; Stocker, B.D.; Terrer, C.; Zohner, C.M. The Global Distribution and Environmental Drivers of Aboveground versus Belowground Plant Biomass. Nat. Ecol. Evol. 2021, 5, 1110–1122. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Hou, X.; Huang, Z.; Liu, Q.; Chen, S.; Zhao, Y. Characteristics of Soil and Water Loss in Pinus Massoniana Forest with Different Canopy Density under Different Natural Rainfall Levels. J. Soil. Water Conserv 2020, 34, 27–33+40. [Google Scholar]
- Kato-Noguchi, H. Involvement of Allelopathy in the Formation of Monospecific Colonies of Ferns. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Moran, E. Multitemporal Spectral Mixture Analysis for Amazonian Land-Cover Change Detection. Can. J. Remote Sens. 2004, 30, 87–100. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A Processor for Users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Karathanassi, V.; Kolokousis, P.; Ioannidou, S. A Comparison Study on Fusion Methods Using Evaluation Indicators. Int. J. Remote Sens. 2007, 28, 2309–2341. [Google Scholar] [CrossRef]
- Brodu, N. Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef]
- Lu, D.; Hetrick, S.; Moran, E. Land Cover Classification in a Complex Urban-Rural Landscape with QuickBird Imagery. Photogramm. Eng. Remote Sens. 2010, 76, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef]
- Yu, X.; Lu, D.; Jiang, X.; Li, G.; Chen, Y.; Li, D.; Chen, E. Examining the Roles of Spectral, Spatial, and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical Region. Remote Sens. 2020, 12, 2907. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, S.; Chen, Y.; Lu, D. Exploring Tree Species Classification in Subtropical Regions with a Modified Hierarchy-Based Classifier Using High Spatial Resolution Multisensor Data. J. Remote Sens. 2022, 2022, 9847835. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-429-14397-7. [Google Scholar]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Georgopoulos, N.; Gitas, I.Z.; Korhonen, L.; Antoniadis, K.; Stefanidou, A. Estimating Crown Biomass in a Multilayered Fir Forest Using Airborne LiDAR Data. Remote Sens. 2023, 15, 2919. [Google Scholar] [CrossRef]
- Wang, R.; Li, G.; Lu, Y.; Lu, D. A Comparative analysis of Grid-Based and Object-Based Modeling Approaches for Poplar Forest Growing Stock Volume Estimation in Plain Regions Using Airborne Lidar Data. Geo-Spat. Inf. Sci 2023, 1–19. [Google Scholar] [CrossRef]
- Cao, L.; Xu, T.; Shen, X.; She, G. Mapping Biomass by Integrating Landsat OLI and Airborne Lidar Transect Data in Subtropical Forests. J. Remote Sens. 2016, 20, 665–678. [Google Scholar]
- Jiang, X.; Li, G.; Lu, D.; Chen, E.; Wei, X. Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar data. Remote Sens. 2020, 12, 1101. [Google Scholar] [CrossRef]
Datasets | Description |
---|---|
Field survey of land-cover types | Land-cover types, including Masson pine forest with understory vegetation of Dicranopteris, farmland, water, impervious surfaces, and others were collected in January and August 2022. |
Field measurement at plot level | 19 sample plots with a size of 1 m × 1 m for collection of Dicranopteris aboveground biomass, and 19 subplots with a size of 25 cm × 25 cm at the center of each 1 m × 1 m plot for collection of root biomass were collected in August 2022. The unit of belowground, aboveground, and total biomass with g/m2 for each sample was then converted to t/ha. |
Handheld laser scanning data | 19 typical areas containing the sample plots were collected in November 2022 using the handheld laser scanning device. |
Airborne laser scanning data | Airborne Lidar data covering the entire Luodihe Watershed were collected in October 2022. |
Optical sensor data | Remote sensing images including GaoFen-6 (GF-6) panchromatic band with 2 m spatial resolution and Sentinel-2 multispectral bands with 10 m spatial resolution were collected; both images were acquired in February 2021. |
Category | Range (t/ha) | Mean (t/ha) | Standard Deviation (t/ha) |
---|---|---|---|
Aboveground biomass | 4.0–19. 70 | 9.20 | 4.97 |
Belowground biomass | 1.50–14.03 | 4.82 | 3.67 |
Total biomass | 6.11–28.16 | 14.03 | 6.87 |
Biomass (g/m2) | Window Size (m2) | Estimation Models | Modeling R2m | Evaluation | ||
---|---|---|---|---|---|---|
Validation R2v | RMSE (t/ha) | rRMSE (%) | ||||
Total biomass | 1 × 1 | 28.48 − 3.97H75 − 73.88 D2 | 0.27 | 0.07 | 6.71 | 47.85 |
3 × 3 | −7.31 + 12.07 H99 + 98.60 D5 | 0.14 | 0.06 | 8.09 | 57.70 | |
4 × 4 | 23.26 − 22.65 H95 + 178.02 D5 | 0.50 | 0.21 | 6.14 | 43.84 | |
5 × 5 | 12.73 − 26.27 H80 + 275.81 D5 | 0.76 | 0.61 | 4.30 | 30.63 | |
6 × 6 | 0.88 + 1410 D52H99 | 0.85 | 0.64 | 3.95 | 28.21 | |
7 × 7 | 0.46 + 1450 D52H99 | 0.78 | 0.58 | 4.20 | 29.97 | |
8 × 8 | −6.13 − 26.54 H10 + 318.92 D5 | 0.72 | 0.47 | 4.64 | 33.14 | |
Above-ground biomass | 1 × 1 | 13.69 + 3.87 H80 − 40.71 D2 | 0.34 | 0.19 | 4.36 | 47.39 |
3 × 3 | 0.47 + 7.98 H50 + 54.83 D5 | 0.21 | 0.05 | 6.06 | 65.86 | |
4 × 4 | −2.25 + 8.63 H10 + 115.02 D5 | 0.43 | 0.15 | 4.32 | 46.89 | |
5 × 5 | 1.41 − 8.50 H80 + 174.49 D5 | 0.57 | 0.32 | 3.96 | 42.98 | |
6 × 6 | 2.15 + 3250 D52H10 | 0.84 | 0.58 | 3.26 | 35.79 | |
7 × 7 | 2.39 + 3090 D52H10 | 0.80 | 0.34 | 4.90 | 53.28 | |
8 × 8 | 1.45 + 3730 D52H10 | 0.79 | 0.21 | 4.78 | 51.92 |
Biomass Category | Range (t/ha) | Mean (t/ha) | Standard Deviation (t/ha) |
---|---|---|---|
Aboveground biomass | 1.15–24.20 | 8.68 | 5.62 |
Total biomass | 1.89–25.42 | 14.14 | 6.82 |
Estimation Models | Modeling R2m | Evaluation Results | |||
---|---|---|---|---|---|
Validation R2v | RMSE (t/ha) | rRMSE (%) | |||
Total biomass | −1.38 + 11.43H75 + 131.12D4 | 0.824 | 0.72 | 2.51 | 17.68 |
Aboveground biomass | −0.95 + 5.49H90 + 82.58D4 | 0.784 | 0.68 | 1.62 | 17.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, J.; Lu, S.; Li, D.; Lu, D. Integration of Handheld and Airborne Lidar Data for Dicranopteris Dichotoma Biomass Estimation in a Subtropical Region of Fujian Province, China. Remote Sens. 2024, 16, 2088. https://doi.org/10.3390/rs16122088
Li X, Wu J, Lu S, Li D, Lu D. Integration of Handheld and Airborne Lidar Data for Dicranopteris Dichotoma Biomass Estimation in a Subtropical Region of Fujian Province, China. Remote Sensing. 2024; 16(12):2088. https://doi.org/10.3390/rs16122088
Chicago/Turabian StyleLi, Xiaoxue, Juan Wu, Shunfa Lu, Dengqiu Li, and Dengsheng Lu. 2024. "Integration of Handheld and Airborne Lidar Data for Dicranopteris Dichotoma Biomass Estimation in a Subtropical Region of Fujian Province, China" Remote Sensing 16, no. 12: 2088. https://doi.org/10.3390/rs16122088
APA StyleLi, X., Wu, J., Lu, S., Li, D., & Lu, D. (2024). Integration of Handheld and Airborne Lidar Data for Dicranopteris Dichotoma Biomass Estimation in a Subtropical Region of Fujian Province, China. Remote Sensing, 16(12), 2088. https://doi.org/10.3390/rs16122088