Satellite Remote Sensing Tools for Drought Assessment in Vineyards and Olive Orchards: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methods
2.2. Bibliographic Source Assay
2.2.1. Group Article Classification
2.2.2. Bibliometric Analysis
3. Results
3.1. Analysis of Research Trends and Geographical Distribution
3.2. Analysis of Research Trends by Categorical Classification
3.3. Satellite Platforms and Sensors Used for Drought Monitoring
Satellite Platform | Launch Year | Sensor | No. of Bands | Spectral Range (μm) | Spatial Resolution (m) | No. of Studies | Study References |
---|---|---|---|---|---|---|---|
Landsat-5 | 1984 | Thematic Mapper (TM) | 7 | 0.45–12.5 | 30 and 120 | 17 | [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
Ikonos | 1999 | Multispectral imagery; Panchromatic imagery | 5 | 0.45–0.85; 0.53–0.93 | 4; 1 | 2 | [54,55] |
Landsat-7 | 1999 | Enhanced Thematic Mapper Plus (ETM+) | 8 | 0.45–12.5 | 15, 30, 60 | 19 | [37,40,41,42,43,44,45,46,51,56,57,58,59,60,61,62,63,64,65] |
Terra/Aqua | 1999 | Moderate Resolution Imaging Spectroradiometer (MODIS) | 36 | 0.405–14.385 | 250, 500, 1000 | 17 | [41,54,63,66,67,68,69,70,71,72,73,74,75,76,77,78,79] |
Formosat-2 | 2004 | Remote Sensing Instrument (RSI) | 5 | 0.45–0.90 | 2 and 8 | 1 | [40] |
MSG-2 | 2005 | Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) | 12 | 0.4–1.6; 3.9–13.4 | 0.63–13.3 | 1 | [80] |
GOES-15 | 2010 | GOES Imager | 20 | 0.55–13.35 | 1000, 4000 | 2 | [75,78] |
Landsat-8 | 2013 | Operational Land Imager (OLI) | 9 | 0.433–2.294 | 15, 30 | 28 | [12,14,21,37,39,41,42,47,54,58,59,61,63,67,69,73,74,75,78,81,82,83,84,85,86,87,88,89] |
Thermal Infrared Sensor (TIRS) | 2 | 10.60–12.51 | 100 | ||||
SPOT-7 | 2014 | New Astrosat Optical Modular Instrument (NAOMI) | 5 | 0.455–0.890 | 1.5–6 | 2 | [35,90] |
Sentinel-2 | 2015 | MultiSpectral Instrument (MSI) | 13 | 0.443–2.202 | 10, 20, 60 | 30 | [36,37,59,61,63,69,83,84,85,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111] |
PlanetScope | 2016 | Dove-C | 8 | 0.431–0.885 | 3–4.1 | 3 | [91,103,112] |
Sentinel-3 | 2016 | Sea and Land Surface Temperature Radiometer (SLSTR) | 11 | 0.55–2.25; 3.74–12 | 500; 1000 | 1 | [109] |
Landsat-9 | 2021 | Thermal Infrared Sensor 2 (TIRS-2) | 2 | 10.6–12.51 | 100 | 1 | [67] |
3.4. Models and Indices
4. Discussion
4.1. Aridity and Drought Monitoring
4.2. Agricultural Water Management
4.3. Land Use Management
4.4. Water Stress
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costa, J.M.; Egipto, R.; Aguiar, F.C.; Marques, P.; Nogales, A.; Madeira, M. The Role of Soil Temperature in Mediterranean Vineyards in a Climate Change Context. Front. Plant Sci. 2023, 14, 1145137. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Guimarães, N.; Freitas, T.R.; Malheiro, A.C.; Santos, J.A. Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy 2022, 12, 350. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern Viticulture in Southern Europe: Vulnerabilities and Strategies for Adaptation to Water Scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Orlandi, F.; Fornaciari, M. Impact of Climate Change on Olive Crop Production in Italy. Atmosphere 2020, 11, 595. [Google Scholar] [CrossRef]
- Fraga, H.; Freitas, T.R.; Fonseca, A.; Fernandes, A.; Santos, J.A. Climate Change Implications on the Viticulture Geography. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Olive Tree Irrigation as a Climate Change Adaptation Measure in Alentejo, Portugal. Agric. Water Manag. 2020, 237, 106193. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 February 2024).
- Ozturk, M.; Altay, V.; Gönenç, T.M.; Unal, B.T.; Efe, R.; Akçiçek, E.; Bukhari, A. An Overview of Olive Cultivation in Turkey: Botanical Features, Eco-Physiology and Phytochemical Aspects. Agronomy 2021, 11, 295. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security: 2021; FAO: Rome, Italy, 2021; ISBN 978-92-5-134071-4. [Google Scholar]
- Arab, S.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of Grape Yields from Time-Series Vegetation Indices Using Satellite Remote Sensing and a Machine-Learning Approach. Remote Sens. Appl.—Soc. Environ. 2021, 22, 100485. [Google Scholar] [CrossRef]
- Claro, A.M.; Fonseca, A.; Fraga, H.; Santos, J.A. Susceptibility of Iberia to Extreme Precipitation and Aridity: A New High-Resolution Analysis over an Extended Historical Period. Water 2023, 15, 3840. [Google Scholar] [CrossRef]
- Kefi, M.; Pham, T.D.; Kashiwagi, K.; Yoshino, K. Identification of Irrigated Olive Growing Farms Using Remote Sensing Techniques. Euro-Mediterr. J. Environ. Integr. 2016, 1, 3. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Wing, I.S.; De Cian, E.; Mistry, M.N. Global Vulnerability of Crop Yields to Climate Change. J. Environ. Econ. Manag. 2021, 109, 102462. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil Erosion and Agricultural Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S.I. Integrating Pests and Pathogens into the Climate Change/Food Security Debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A Global Synthesis Reveals Biodiversity Loss as a Major Driver of Ecosystem Change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Arab, S.T.; Noguchi, R.; Ahamed, T. Yield Loss Assessment of Grapes Using Composite Drought Index Derived from Landsat OLI and TIRS Datasets. Remote Sens. Appl. Soc. Environ. 2022, 26, 100727. [Google Scholar] [CrossRef]
- Savelli, E.; Rusca, M.; Cloke, H.; Di Baldassarre, G. Drought and Society: Scientific Progress, Blind Spots, and Future Prospects. WIREs Clim. Change 2022, 13, e761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Lan, Y.; Thomson, S.J.; Huang, Y.; Hoffmann, W.C.; Zhang, H. Current Status and Future Directions of Precision Aerial Application for Site-Specific Crop Management in the USA. Comput. Electron. Agric. 2010, 74, 34–38. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote Sensing Platforms and Sensors: A Survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Wang, D.; Shao, Q.; Yue, H. Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned Aerial Systems (UASs): A Review. Remote Sens. 2019, 11, 1308. [Google Scholar] [CrossRef]
- Guo, H.; Goodchild, M.F.; Annoni, A. (Eds.) Manual of Digital Earth; Springer: Singapore, 2020; ISBN 978-981-329-914-6. [Google Scholar]
- Triantafyllou, A.; Sarigiannidis, P.; Bibi, S. Precision Agriculture: A Remote Sensing Monitoring System Architecture. Information 2019, 10, 348. [Google Scholar] [CrossRef]
- Szewczak, K.; Łoś, H.; Pudełko, R.; Doroszewski, A.; Gluba, Ł.; Łukowski, M.; Rafalska-Przysucha, A.; Słomiński, J.; Usowicz, B. Agricultural Drought Monitoring by MODIS Potential Evapotranspiration Remote Sensing Data Application. Remote Sens. 2020, 12, 3411. [Google Scholar] [CrossRef]
- Mullapudi, A.; Vibhute, A.D.; Mali, S.; Patil, C.H. A Review of Agricultural Drought Assessment with Remote Sensing Data: Methods, Issues, Challenges and Opportunities. Appl. Geomat. 2023, 15, 1–13. [Google Scholar] [CrossRef]
- Qin, Q.; Wu, Z.; Zhang, T.; Sagan, V.; Zhang, Z.; Zhang, Y.; Zhang, C.; Ren, H.; Sun, Y.; Xu, W.; et al. Optical and Thermal Remote Sensing for Monitoring Agricultural Drought. Remote Sens. 2021, 13, 5092. [Google Scholar] [CrossRef]
- Dikici, M. Drought Analysis for the Seyhan Basin with Vegetation Indices and Comparison with Meteorological Different Indices. Sustainability 2022, 14, 4464. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Szczypta, C.; Calvet, J.C.; Boulet, G. FAO-56 Dual Model Combined with Multi-Sensor Remote Sensing for Regional Evapotranspiration Estimations. Remote Sens. 2014, 6, 5387–5406. [Google Scholar] [CrossRef]
- Mendes, M.P.; Matias, M.; Gomes, R.C.; Falcão, A.P. Delimitation of Low Topsoil Moisture Content Areas in a Vineyard Using Remote Sensing Imagery (Sentinel-1 and Sentinel-2) in a Mediterranean-Climate Region. Soil Water Res. 2021, 16, 85–94. [Google Scholar] [CrossRef]
- Bretreger, D.; Yeo, I.-Y.; Hancock, G. Quantifying Irrigation Water Use with Remote Sensing: Soil Water Deficit Modelling with Uncertain Soil Parameters. Agric. Water Manag. 2022, 260, 107299. [Google Scholar] [CrossRef]
- Awada, H.; Di Prima, S.; Sirca, C.; Giadrossich, F.; Marras, S.; Spano, D.; Pirastru, M. A Remote Sensing and Modeling Integrated Approach for Constructing Continuous Time Series of Daily Actual Evapotranspiration. Agric. Water Manag. 2022, 260, 107320. [Google Scholar] [CrossRef]
- Tunc, E.; Tsegai, A.T.; Çelik, S. Analysis of Spatial-Temporal Changes of Agricultural Land Use during the Last Three Decades in the Araban District of Turkey Using Remote Sensing. Geomat. Environ. Eng. 2021, 15, 111–123. [Google Scholar] [CrossRef]
- Kharrou, M.; Simonneaux, V.; Er-Raki, S.; Le Page, M.; Khabba, S.; Chehbouni, A. Assessing Irrigation Water Use with Remote Sensing-Based Soil Water Balance at an Irrigation Scheme Level in a Semi-Arid Region of Morocco. Remote Sens. 2021, 13, 1133. [Google Scholar] [CrossRef]
- Pieri, M.; Cantini, C.; Giovannelli, A.; Maselli, F.; Chiesi, M.; Battista, P.; Fibbi, L.; Gardin, L.; Rapi, B.; Romani, M.; et al. Estimation of Actual Evapotranspiration in Fragmented Mediterranean Areas by the Spatio-Temporal Fusion of Ndvi Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5108–5117. [Google Scholar] [CrossRef]
- Bretreger, D.; Yeo, I.-Y.; Quijano, J.; Awad, J.; Hancock, G.; Willgoose, G. Monitoring Irrigation Water Use over Paddock Scales Using Climate Data and Landsat Observations. Agric. Water Manag. 2019, 221, 175–191. [Google Scholar] [CrossRef]
- Häusler, M.; Conceição, N.; Tezza, L.; Sánchez, J.M.; Campagnolo, M.L.; Häusler, A.J.; Silva, J.M.N.; Warneke, T.; Heygster, G.; Ferreira, M.I. Estimation and Partitioning of Actual Daily Evapotranspiration at an Intensive Olive Grove Using the STSEB Model Based on Remote Sensing. Agric. Water Manag. 2018, 201, 188–198. [Google Scholar] [CrossRef]
- Pôças, I.; Paço, T.A.; Paredes, P.; Cunha, M.; Pereira, L.S. Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data. Remote Sens. 2015, 7, 2373–2400. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Ortega-Salazar, S.; Aguilar, R.; De La Fuente, D.; Fuentes, F. Evaluation of a Model to Estimate Net Radiation over a Drip-Irrigated Olive Orchard Using Landsat Satellite Images. Acta Hortic. 2014, 1057, 309–314. [Google Scholar] [CrossRef]
- PÔças, I.; Paço, T.A.; Cunha, M.; Andrade, J.A.; Silvestre, J.; Sousa, A.; Santos, F.L.; Pereira, L.S.; Allen, R.G. Satellite-Based Evapotranspiration of a Super-Intensive Olive Orchard: Application of METRIC Algorithms. Biosyst. Eng. 2014, 128, 69–81. [Google Scholar] [CrossRef]
- Mateos, L.; González-Dugo, M.; Testi, L.; Villalobos, F. Monitoring Evapotranspiration of Irrigated Crops Using Crop Coefficients Derived from Time Series of Satellite Images. I. Method Validation. Agric. Water Manag. 2013, 125, 81–91. [Google Scholar] [CrossRef]
- Johnson, L.; Trout, T. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sens. 2012, 4, 439–455. [Google Scholar] [CrossRef]
- Consoli, S.; Barbagallo, S. Estimating Water Requirements of an Irrigated Mediterranean Vineyard Using a Satellite-Based Approach. J. Irrig. Drain. Eng. 2012, 138, 896–904. [Google Scholar] [CrossRef]
- Sánchez, N.; Martínez-Fernández, J.; Rodríguez-Ruiz, M.; Torres, E.; Calera, A. A Simulation of Soil Water Content Based on Remote Sensing in a Semi-Arid Mediterranean Agricultural Landscape. Span. J. Agric. Res. 2012, 10, 521–531. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Ortega-Farías, S.; Lagos, L.O.; Kleissl, J.; Morales, L.; Poblete-Echeverría, C.; Allen, R.G. Crop Coefficients and Actual Evapotranspiration of a Drip-Irrigated Merlot Vineyard Using Multispectral Satellite Images. Irrig. Sci. 2012, 30, 485–497. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing Satellite-Based Basal Crop Coefficients for Irrigated Grapes (Vitis vinifera L). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Gentile, A.; Zhang, G.; Pierce, L.; Ciraolo, G.; La Loggia, G. Analysis of the energetic flows through the sebal application to the assensment of the actual evapotraspiration in a napa valley vineyard California (USA). In Proceedings of the 12th National Agrometeorology Conference, Sassari, Italy, 15–17 June 2009. [Google Scholar] [CrossRef]
- Battista, P.; Chiesi, M.; Rapi, B.; Romani, M.; Cantini, C.; Giovannelli, A.; Cocozza, C.; Tognetti, R.; Maselli, F. Integration of Ground and Multi-Resolution Satellite Data for Predicting the Water Balance of a Mediterranean Two-Layer Agro-Ecosystem. Remote Sens. 2016, 8, 731. [Google Scholar] [CrossRef]
- Johnson, L.; Roczen, D.; Youkhana, S.; Nemani, R.; Bosch, D. Mapping Vineyard Leaf Area with Multispectral Satellite Imagery. Comput. Electron. Agric. 2003, 38, 33–44. [Google Scholar] [CrossRef]
- Alkassem, M.; Buis, S.; Coulouma, G.; Jacob, F.; Lagacherie, P.; Prévot, L. Estimating Soil Available Water Capacity within a Mediterranean Vineyard Watershed Using Satellite Imagery and Crop Model Inversion. Geoderma 2022, 425, 116081. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Ortega-Farías, S.; Gil, P.M.; Knopp, D.; Morales-Salinas, L.; Lagos, L.O.; de la Fuente, D.; López-Olivari, R.; Fuentes, S. Assessment of the Vineyard Water Footprint by Using Ancillary Data and EEFlux Satellite Images. Examples in the Chilean Central Zone. Sci. Total Environ. 2022, 811, 152452. [Google Scholar] [CrossRef] [PubMed]
- Kisekka, I.; Peddinti, S.; Kustas, W.; McElrone, A.; Bambach-Ortiz, N.; McKee, L.; Bastiaanssen, W. Spatial-Temporal Modeling of Root Zone Soil Moisture Dynamics in a Vineyard Using Machine Learning and Remote Sensing. Irrig. Sci. 2022, 40, 761–777. [Google Scholar] [CrossRef]
- D’Urso, G.; Bolognesi, S.; Kustas, W.; Knipper, K.; Anderson, M.; Alsina, M.; Hain, C.; Alfieri, J.; Prueger, J.; Gao, F.; et al. Determining Evapotranspiration by Using Combination Equation Models with Sentinel-2 Data and Comparison with Thermal-Based Energy Balance in a California Irrigated Vineyard. Remote Sens. 2021, 13, 3720. [Google Scholar] [CrossRef]
- Yildirim, T.; Zhou, Y.; Flynn, K.C.; Gowda, P.H.; Ma, S.; Moriasi, D.N. Evaluating the Sensitivity of Vegetation and Water Indices to Monitor Drought for Three Mediterranean Crops. Agron. J. 2021, 113, 123–134. [Google Scholar] [CrossRef]
- García-Gutiérrez, V.; Stöckle, C.; Gil, P.; Meza, F. Evaluation of Penman-Monteith Model Based on Sentinel-2 Data for the Estimation of Actual Evapotranspiration in Vineyards. Remote Sens. 2021, 13, 478. [Google Scholar] [CrossRef]
- Ortega-Salazar, S.; Ortega-Farías, S.; Kilic, A.; Allen, R. Performance of the METRIC Model for Mapping Energy Balance Components and Actual Evapotranspiration over a Superintensive Drip-Irrigated Olive Orchard. Agric. Water Manag. 2021, 251, 106861. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Nieto, H.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; McKee, L.G.; Alsina, M.M.; et al. Using High-Spatiotemporal Thermal Satellite ET Retrievals to Monitor Water Use over California Vineyards of Different Climate, Vine Variety and Trellis Design. Agric. Water Manag. 2020, 241, 106361. [Google Scholar] [CrossRef]
- Castelli, G.; Oliveira, L.A.A.; Abdelli, F.; Dhaou, H.; Bresci, E.; Ouessar, M. Effect of Traditional Check Dams (Jessour) on Soil and Olive Trees Water Status in Tunisia. Sci. Total Environ. 2019, 690, 226–236. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Ortega-Farías, S.; Acevedo-Opazo, C.; Fonseca-Luengo, D. Implementation of a Two-Source Model for Estimating the Spatial Variability of Olive Evapotranspiration Using Satellite Images and Ground-Based Climate Data. Water 2018, 10, 339. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, X.; Feng, R.; Qi, W.; Wang, Y.; Shrestha, B. Retrieving Soil Moisture from Grape Growing Areas Using Multi-Feature and Stacking-Based Ensemble Learning Modeling. Comput. Electron. Agric. 2023, 204, 107537. [Google Scholar] [CrossRef]
- Knipper, K.; Yang, Y.; Anderson, M.; Bambach, N.; Kustas, W.; McElrone, A.; Gao, F.; Alsina, M.M. Decreased Latency in Landsat-Derived Land Surface Temperature Products: A Case for near-Real-Time Evapotranspiration Estimation in California. Agric. Water Manag. 2023, 283, 108316. [Google Scholar] [CrossRef]
- Alshammari, H.H.; Altaieb, M.O.; Boukrara, A.; Gasmi, K.; A.elmoniem, M. Expansion of the Olive Crop Based on Modeling Climatic Variables Using Geographic Information System (GIS) in Aljouf Region KSA. Comput. Electron. Agric. 2022, 202, 107280. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Gao, F.; Knipper, K.; Kustas, W.; Anderson, M.; Alsina, M.; Sanchez, L.; Karnieli, A. Time-Series Clustering of Remote Sensing Retrievals for Defining Management Zones in a Vineyard. Irrig. Sci. 2022, 40, 801–815. [Google Scholar] [CrossRef]
- Paul, M.; Rajib, A.; Negahban-Azar, M.; Shirmohammadi, A.; Srivastava, P. Improved Agricultural Water Management in Data-Scarce Semi-Arid Watersheds: Value of Integrating Remotely Sensed Leaf Area Index in Hydrological Modeling. Sci. Total Environ. 2021, 791, 148177. [Google Scholar] [CrossRef] [PubMed]
- Carreño-Conde, F.; Sipols, A.E.; Simón, C.; Mostaza-Colado, D. A Forecast Model Applied to Monitor Crops Dynamics Using Vegetation Indices (NDVI). Appl. Sci. 2021, 11, 1859. [Google Scholar] [CrossRef]
- Moumen, Z.; Elhassnaoui, I.; Khaddi, W.; Wahba, M.A.S.; Lahrach, A. Assessment of Deficit Irrigation Efficiency. Case Study: Middle Sebou and Innaouene Downstream. Open Agric. 2021, 6, 102–114. [Google Scholar] [CrossRef]
- Wilson, T.G.; Kustas, W.P.; Alfieri, J.G.; Anderson, M.C.; Gao, F.; Prueger, J.H.; McKee, L.G.; Alsina, M.M.; Sanchez, L.A.; Alstad, K.P. Relationships between Soil Water Content, Evapotranspiration, and Irrigation Measurements in a California Drip-Irrigated Pinot Noir Vineyard. Agric. Water Manag. 2020, 237, 106186. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Knipper, K.; Kustas, W.P.; Anderson, M.C.; Netzer, Y.; Gao, F.; Alsina, M.M.; Sanchez, L.A.; Karnieli, A. Using Satellite Thermal-Based Evapotranspiration Time Series for Defining Management Zones and Spatial Association to Local Attributes in a Vineyard. Remote Sens. 2020, 12, 2436. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; Yang, Y.; McKee, L.G.; Nieto, H.; et al. Evapotranspiration Estimates Derived Using Thermal-Based Satellite Remote Sensing and Data Fusion for Irrigation Management in California Vineyards. Irrig. Sci. 2019, 37, 431–449. [Google Scholar] [CrossRef]
- Autovino, D.; Minacapilli, M.; Provenzano, G. Modelling Bulk Surface Resistance by MODIS Data and Assessment of MOD16A2 Evapotranspiration Product in an Irrigation District of Southern Italy. Agric. Water Manag. 2016, 167, 86–94. [Google Scholar] [CrossRef]
- Hoedjes, J.C.B.; Chehbouni, A.; Jacob, F.; Ezzahar, J.; Boulet, G. Deriving Daily Evapotranspiration from Remotely Sensed Instantaneous Evaporative Fraction over Olive Orchard in Semi-Arid Morocco. J. Hydrol. 2008, 354, 53–64. [Google Scholar] [CrossRef]
- Semmens, K.; Anderson, M.; Kustas, W.; Gao, F.; Alfieri, J.; McKee, L.; Prueger, J.; Hain, C.; Cammalleri, C.; Yang, Y.; et al. Monitoring Daily Evapotranspiration over Two California Vineyards Using Landsat 8 in a Multi-Sensor Data Fusion Approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Potopová, V.; Trnka, M.; Hamouz, P.; Soukup, J.; Castravet, T. Statistical Modelling of Drought-Related Yield Losses Using Soil Moisture-Vegetation Remote Sensing and Multiscalar Indices in the South-Eastern Europe. Agric. Water Manag. 2020, 236, 106168. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Cass, A.; Srivastava, P.K. Performance Assessment of the SEVIRI Evapotranspiration Operational Product: Results over Diverse Mediterranean Ecosystems. IEEE Sensors J. 2015, 15, 3412–3423. [Google Scholar] [CrossRef]
- Arab, S.T.; Ahamed, T. Near-Real-Time Drought Monitoring and Assessment for Vineyard Production on a Regional Scale with Standard Precipitation and Vegetation Indices Using Landsat and CHIRPS Datasets. Asia-Pac. J. Reg. Sci. 2023, 7, 591–614. [Google Scholar] [CrossRef]
- Bambach, N.; Kustas, W.; Alfieri, J.; Gao, F.; Prueger, J.; Hipps, L.; McKee, L.; Castro, S.J.; Alsina, M.M.; McElrone, A.J. Inter-Annual Variability of Land Surface Fluxes across Vineyards: The Role of Climate, Phenology, and Irrigation Management. Irrig. Sci. 2022, 40, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Doherty, C.T.; Johnson, L.F.; Volk, J.; Mauter, M.S.; Bambach, N.; McElrone, A.J.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; Castro, S.J.; et al. Effects of Meteorological and Land Surface Modeling Uncertainty on Errors in Winegrape ET Calculated with SIMS. Irrig. Sci. 2022, 40, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Gao, F.; Anderson, M.; Kustas, W.; Nieto, H.; Knipper, K.; Yang, Y.; White, W.; Alfieri, J.; Torres-Rua, A.; et al. Evaluation of Satellite Leaf Area Index in California Vineyards for Improving Water Use Estimation. Irrig. Sci. 2022, 40, 531–551. [Google Scholar] [CrossRef]
- Reyes Rojas, L.A.; Moletto-Lobos, I.; Corradini, F.; Mattar, C.; Fuster, R.; Escobar-Avaria, C. Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem. Remote Sens. 2021, 13, 4105. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Novello, V.; Lessio, A.; Tarricone, L.; De Palma, L. Intra-Vineyard Variability Description through Satellite-Derived Spectral Indices as Related to Soil and Vine Water Status. Acta Hortic. 2018, 1197, 59–68. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Novello, V.; Lessioa, A.; de Palma, L. Describing the Spatio-Temporal Variability of Vines and Soil by Satellite-Based Spectral Indices: A Case Study in Apulia (South Italy). Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 42–50. [Google Scholar] [CrossRef]
- Vanino, S.; Pulighe, G.; Nino, P.; de Michele, C.; Bolognesi, S.F.; D’Urso, G. Estimation of Evapotranspiration and Crop Coefficients of Tendone Vineyards Using Multi-Sensor Remote Sensing Data in a Mediterranean Environment. Remote Sens. 2015, 7, 14708–14730. [Google Scholar] [CrossRef]
- Faraslis, I.; Dalezios, N.; Alpanakis, N.; Tziatzios, G.; Spiliotopoulos, M.; Sakellariou, S.; Sidiropoulos, P.; Dercas, N.; Domínguez, A.; Martínez-López, J.; et al. Remotely Sensed Agroclimatic Classification and Zoning in Water-Limited Mediterranean Areas towards Sustainable Agriculture. Remote Sens. 2023, 15, 5720. [Google Scholar] [CrossRef]
- Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Gruhier, C.; Chehbouni, A. Analysis of Vegetation Behavior in a North African Semi-Arid Region, Using SPOT-VEGETATION NDVI Data. Remote Sens. 2011, 3, 2568–2590. [Google Scholar] [CrossRef]
- Navarro, R.; Wirkus, L.; Dubovyk, O. Spatio-Temporal Assessment of Olive Orchard Intensification in the Saiss Plain (Morocco) Using k-Means and High-Resolution Satellite Data. Remote Sens. 2023, 15, 50. [Google Scholar] [CrossRef]
- Abubakar, M.A.; Chanzy, A.; Fabrice, F.; Courault, D. Characterisation of Grapevine Canopy Leaf Area and Inter-Row Management Using Sentinel-2 Time Series. OENO One 2023, 57. [Google Scholar] [CrossRef]
- Battista, P.; Bellini, E.; Chiesi, M.; Costafreda-Aumedes, S.; Fibbi, L.; Leolini, L.; Moriondo, M.; Rapi, B.; Rossi, R.; Sabatini, F.; et al. Estimating the Effect of Water Shortage on Olive Trees by the Combination of Meteorological and Sentinel-2 Data. European J. Remote Sens. 2023, 56, 2194553. [Google Scholar] [CrossRef]
- Elfarkh, J.; Johansen, K.; El Hajj, M.M.; Almashharawi, S.K.; McCabe, M.F. Evapotranspiration, Gross Primary Productivity and Water Use Efficiency over a High-Density Olive Orchard Using Ground and Satellite Based Data. Agric. Water Manag. 2023, 287, 108423. [Google Scholar] [CrossRef]
- Lopez-Fornieles, E.; Brunel, G.; Devaux, N.; Roger, J.-M.; Tisseyre, B. Is It Possible to Assess Heatwave Impact on Grapevines at the Regional Level with Time Series of Satellite Images? Agronomy 2022, 12, 563. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Hliaoutakis, A.; Argyriou, A.V.; Morianou, G.; Voulgarakis, A.E.; Kokinou, E.; Daliakopoulos, I.N.; Kalderis, D.; Tzerakis, K.; Psarras, G.; et al. A Web-Based GIS Platform Supporting Innovative Irrigation Management Techniques at Farm-Scale for the Mediterranean Island of Crete. Sci. Total Environ. 2022, 842, 156918. [Google Scholar] [CrossRef]
- Sghaier, A.; Dhaou, H.; Jarray, L.; Abaab, Z.; Sekrafi, A.; Ouessar, M. Assessment of Drought Stress in Arid Olive Groves Using HidroMORE Model. J. Agric. Eng. 2022, 53. [Google Scholar] [CrossRef]
- Bhattarai, N.; D’Urso, G.; Kustas, W.P.; Bambach-Ortiz, N.; Anderson, M.; McElrone, A.J.; Knipper, K.R.; Gao, F.; Alsina, M.M.; Aboutalebi, M.; et al. Influence of Modeling Domain and Meteorological Forcing Data on Daily Evapotranspiration Estimates from a Shuttleworth–Wallace Model Using Sentinel-2 Surface Reflectance Data. Irrig. Sci. 2022, 40, 497–513. [Google Scholar] [CrossRef]
- Safre, A.L.S.; Nassar, A.; Torres-Rua, A.; Aboutalebi, M.; Saad, J.C.C.; Manzione, R.L.; de Castro Teixeira, A.H.; Prueger, J.H.; McKee, L.G.; Alfieri, J.G.; et al. Performance of Sentinel-2 SAFER ET Model for Daily and Seasonal Estimation of Grapevine Water Consumption. Irrig. Sci. 2022, 40, 635–654. [Google Scholar] [CrossRef]
- Pinel, E.L.; Duthoit, S.; Costard, A.D.; Rousseau, J.; Hourdel, J.; Vidal-Vigneron, M.; Cheret, V.; Clenet, H. Monitoring Vineyard Water Status Using Sentinel-2 Images: Qualitative Survey on Five Wine Estates in the South of France. OENO One 2021, 55, 115–127. [Google Scholar] [CrossRef]
- Darra, N.; Psomiadis, E.; Kasimati, A.; Anastasiou, A.; Anastasiou, E.; Fountas, S. Remote and Proximal Sensing-Derived Spectral Indices and Biophysical Variables for Spatial Variation Determination in Vineyards. Agronomy 2021, 11, 741. [Google Scholar] [CrossRef]
- Ramos, T.B.; Simionesei, L.; Oliveira, A.R.; Neves, R.; Darouich, H. Exploring the Use of Vegetation Indices for Validating Crop Transpiration Fluxes Computed with the MOHID-Land Model. Application to Vineyard. Agronomy 2021, 11, 1228. [Google Scholar] [CrossRef]
- Abdelmoula, H.; Kallel, A.; Roujean, J.-L.; Gastellu-Etchegorry, J.-P. Dynamic Retrieval of Olive Tree Properties Using Bayesian Model and Sentinel-2 Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9267–9286. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Duthoit, S.; Albughdadi, M.; Costard, A.D.; Rousseau, J.; Chéret, V.; Clenet, H. Towards Vine Water Status Monitoring on a Large Scale Using Sentinel-2 Images. Remote Sens. 2021, 13, 1837. [Google Scholar] [CrossRef]
- Hafyani, M.E.; Essahlaoui, A.; Fung-Loy, K.; Hubbart, J.A.; Van Rompaey, A. Assessment of Agricultural Water Requirements for Semi-Arid Areas: A Case Study of the Boufakrane River Watershed (Morocco). Appl. Sci. 2021, 11, 10379. [Google Scholar] [CrossRef]
- Makhloufi, A.; Kallel, A.; Chaker, R.; Gastellu-Etchegorry, J.-P. Retrieval of Olive Tree Biophysical Properties from Sentinel-2 Time Series Based on Physical Modelling and Machine Learning Technique. Int. J. Remote Sens. 2021, 42, 8542–8571. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Albughdadi, M.; Duthoit, S.; Chéret, V.; Rousseau, J.; Clenet, H. Understanding Vine Hyperspectral Signature through Different Irrigation Plans: A First Step to Monitor Vineyard Water Status. Remote Sens. 2021, 13, 536. [Google Scholar] [CrossRef]
- Aguirre-García, S.-D.; Aranda-Barranco, S.; Nieto, H.; Serrano-Ortiz, P.; Sánchez-Cañete, E.-P.; Guerrero-Rascado, J.-L. Modelling Actual Evapotranspiration Using a Two Source Energy Balance Model with Sentinel Imagery in Herbaceous-Free and Herbaceous-Cover Mediterranean Olive Orchards. Agric. For. Meterol. 2021, 311, 108692. [Google Scholar] [CrossRef]
- Bellvert, J.; Jofre-Ĉekalović, C.; Pelechá, A.; Mata, M.; Nieto, H. Feasibility of Using the Two-Source Energy Balance Model (TSEB) with Sentinel-2 and Sentinel-3 Images to Analyze the Spatio-Temporal Variability of Vine Water Status in a Vineyard. Remote Sens. 2020, 12, 2299. [Google Scholar] [CrossRef]
- Cogato, A.; Pagay, V.; Marinello, F.; Meggio, F.; Grace, P.; Migliorati, M.D.A. Assessing the Feasibility of Using Sentinel-2 Imagery to Quantify the Impact of Heatwaves on Irrigated Vineyards. Remote Sens. 2019, 11, 2869. [Google Scholar] [CrossRef]
- Vanella, D.; Consoli, S.; Continella, A.; Chinnici, G.; Milani, M.; Cirelli, G.; D’Amico, M.; Maesano, G.; Gentile, A.; La Spada, P.; et al. Environmental and Agro-Economic Sustainability of Olive Orchards Irrigated with Reclaimed Water under Deficit Irrigation. Sustainability 2023, 15, 15101. [Google Scholar] [CrossRef]
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; van Leeuwen, W. Algorithm Theoretical Basis Document. 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 30 April 2024).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor]; NASA: Washington, DC, USA, 1973. [Google Scholar]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Bento, V.; Trigo, I.; Gouveia, C.; DaCamara, C. Contribution of Land Surface Temperature (TCI) to Vegetation Health Index: A Comparative Study Using Clear Sky and All-Weather Climate Data Records. Remote Sens. 2018, 10, 1324. [Google Scholar] [CrossRef]
- Kogan, F.N. Global Drought Watch from Space. Bull. Amer. Meteor. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Kamble, D.B.; Gautam, S.; Bisht, H.; Rawat, S.; Kundu, A. Drought Assessment for Kharif Rice Using Standardized Precipitation Index (SPI) and Vegetation Condition Index (VCI). J. Agrometeorol. 2019, 21, 182–187. [Google Scholar] [CrossRef]
- Fraga, H.; Molitor, D.; Leolini, L.; Santos, J.A. What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Appl. Sci. 2020, 10, 3030. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An Overview of the Crop Model Stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- OECD. Policies for the Future of Farming and Food in the European Union; OECD Agriculture and Food Policy Reviews; OECD: Paris, France, 2023; ISBN 978-92-64-36877-4. [Google Scholar]
Database | Website | Query |
---|---|---|
Scopus | https://www.scopus.com (accessed on 30 December 2023) | TITLE-ABS-KEY (((“remote sensing” OR “satel*” OR “sentinel” OR “Landsat” OR “modis”) AND (“viti*” OR “vineyard” OR “*grape*” OR “olive*” OR “olea”) AND (“drought” OR “dry*” OR “arid*” OR “water” OR “irrigation”))) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) |
Web of Science | https://www.webofscience.com (accessed on 30 December 2023) | (TI = (“remote sensing” OR “satel*” OR “sentinel” OR “landsat” OR “modis”) AND TI = (“viti*” OR “vineyard” OR “grape*” OR “olive*” OR “olea”) AND TI = (“drought” OR “dry*” OR “arid*” OR “water” OR “irrigation”)) OR (AB = (“remote sensing” OR “satel*” OR “sentinel” OR “landsat” OR “modis”) AND AB = (“viti*” OR “vineyard” OR “grape*” OR “olive*” OR “olea”) AND AB = (“drought” OR “dry*” OR “arid*” OR “water” OR “irrigation”)) OR (AK = (“remote sensing” OR “satel*” OR “sentinel” OR “landsat” OR “modis”) AND AK = (“viti*” OR “vineyard” OR “grape*” OR “olive*” OR “olea”) AND AK = (“drought” OR “dry*” OR “arid*” OR “water” OR “irrigation”)) and English (Languages) and Article (Document Types). |
Index | Formula | No. of Studies | References |
---|---|---|---|
Enhanced Vegetation Index (EVI) | 8 | [113,114] | |
Normalized Difference Vegetation Index (NDVI) | 56 | [115] | |
Normalized Difference Water Index (NDWI) | 11 | [116] | |
Soil-Adjusted Vegetation Index (SAVI) | 10 | [117] | |
Thermal Condition Index (TCI) | 5 | [118,119] | |
Vegetation Condition Index (VCI) | 5 | [120,121] |
Study | Studied Crops | Scale | Processing Platforms/Tools | Indices and Products |
---|---|---|---|---|
Carreño-Conde et al. [71] | Olive and others | Local | NASA platforms: EarthExplorer; GIS software | NDVI |
Amri et al. [90] | Olive and others | Local | SPOT-VEGETATION data | NDVI; VAI; VCI |
Yildirim et al. [60] | Olive, grapevine and others | Regional | GEE | NDVI; EVI; LSWI |
Arab et al. [21] | Grapevine | Regional | GEE; NASA platforms | NDVI; NDMI; VCI; TCI |
Cogato et al. [110] | Grapevine | Local | SNAP; R software; Digital Globe; QGIS | NDVI; RDVI; EVI; SAVI; GNDVI; TCARI |
Arab and Ahamed [81] | Grapevine and others | Regional | GEE; ArcGIS; MADCAT | NDVI; CHIRPS; SVI; SPI |
Knipper et al. [67] | Grapevine and others | Local | NASA platforms | LST |
Bretreger et al. [42] | Grapevine and others | Local | Digital Earth Australia; SILO | NDVI; EVI; GVMI; RMI |
Study | Studied Crops | Scale | Processing Platforms/Tools | Indices and Products |
---|---|---|---|---|
Alshammari et al. [68] | Olive | Regional | NASA platforms; FAO SOILS; ArcGIS | NDVI |
Moumen et al. [72] | Olive | Regional | GEE | MOD16A2 |
Ortega-Salazar et al. [62] | Olive | Local | U.S. Geological Surveys (USGS) | NDVI |
Hafyani et al. [105] | Olive and others | Local | GEE | NDVI |
Kharrou et al. [40] | Olive and others | Regional | Copernicus Data Hub; NASA platforms; U.S. Geological Surveys (USGS); SAMIR tool | NDVI; LAI |
Pôças et al. [44] | Olive and others | Local | — | NDVI; SAVI |
Kourgialas et al. [96] | Olive, grapevine and others | Regional | Web-GIS irrigation platform | NDVI; NDWI |
Abubakar et al. [92] | Grapevine | Local | Copernicus Services Data Hub | LAI |
Kang et al. [84] | Grapevine | Regional | SNAP; GEE | NDVI; NDWI; EVI; LAI; GCI; REIP |
Laroche-Pinel et al. [100] | Grapevine | Local | THEIA platform | Red, Red-Edge, NIR and SWIR bands |
D’urso et al. [59] | Grapevine | Local | Copernicus Services Data Hub | NDVI; LAI; STR |
Laroche-Pinel et al. [107] | Grapevine | Local | — | NDVI; NDWI; MSI; EVI; CI; MCARI; PRI; WBI; LWI |
Wilson et al. [73] | Grapevine | Local | Multiple satellite platforms | MODIS LAI; LANDSAT bands |
Ohana-Levi et al. [74] | Grapevine | Local | Geospatial Data Gateway | ET |
Knipper et al. [75] | Grapevine | Regional | Multiple satellite platforms | LST |
Vanino et al. [88] | Grapevine | Local | U.S. Geological Surveys (USGS) | LAI; Kc |
Consoli and Barbagallo [49] | Grapevine | Local | — | NDVI; SAVI; LAI; WDVI |
Carrasco-Benavides et al. [51] | Grapevine | Local | USGS Glovis | NDVI; LAI |
Bretreger et al. [37] | Grapevine and others | Local | NASA platforms; Digital; Earth Australia; SLGA | NDVI |
Paul et al. [70] | Grapevine and others | Local | U.S. Geological Surveys (USGS) | LAI |
Johnson and Trout [48] | Grapevine and others | Regional | — | NDVI |
Sánchez et al. [50] | Grapevine and others | Local | SIGPAC; HIDROMORE+ | NDVI |
Study | Studied Crops | Scale | Processing Platforms/Tools | Indices and Products |
---|---|---|---|---|
Abdelmoula et al. [103] | Olive | Local | — | Spectral bands |
Navarro et al. [122] | Olive and others | Regional | GEE; PlanetLabs | NDVI; MSAVI-2; LAI |
Petropoulos et al. [80] | Olive and others | Global | Copernicus Services Data Hub; LSA-SAF | FVC |
Tunc et al. [39] | Olive, grapevine and others | Regional | ERDAS Imagine 8.5; GIS software | Landsat TM and TIRS/OLI bands |
Darra et al. [101] | Grapevine | Local | Copernicus Services Data Hub | NDVI; NDWI; NDRE; MSAVI-2; FVC; FAPAR |
Study | Studied Crops | Scale | Processing Platforms/Tools | Indices and Products |
---|---|---|---|---|
Elfarkh et al. [94] | Olive | Local | Copernicus Services Data Hub de ESA | MSAVI-2; NDWI |
Alkassem et al. [56] | Olive | Local | NASA platforms; STICS | NDVI |
Sghaier et al. [97] | Olive | Local | U.S. Geological Surveys (USGS); HidroMORE | NDVI |
Makhloufi et al. [106] | Olive | Local | THEIA platform | Sentinel-2 bands |
Aguirre-García et al. [108] | Olive | Local | TSEB | LST; Sentinel-2 bands |
Castelli et al. [64] | Olive | Local | TRIME-FM | NDWI; NDII |
Häusler et al. [43] | Olive | Local | STSEB | NDVI |
Fuentes-Peñailillo et al. [65] | Olive | Local | USGS GloVis | Landsat bands |
Battista et al. [54] | Olive | Local | BIOME-BGC | NDVI |
Kefi et al. [14] | Olive | National | — | NDVI; LST; VHI |
Ortega-Farías et al. [45] | Olive | Local | METRIC | LAI |
Pôças et al. [46] | Olive | Local | METRIC | NDVI; LAI |
Hoedjes et al. [77] | Olive | Regional | SEB | ET |
Vanella et al. [111] | Olive | Local | DisALEXI | NDVI; LAI |
Battista et al. [93] | Olive and others | Local | GEE; Copernicus Data Hub | NDVI |
Pieri et al. [41] | Olive and others | Local | EarthExplorer web system | NDVI |
Amri et al. [35] | Olive and others | Local | — | NDVI |
Mateos et al. [47] | Olive and others | Local | — | SAVI |
Reyes Rojas et al. [85] | Olive, grapevine and others | Regional | NASA platforms | NDVI; NDWI; NDMI; MSI; EVI; MSAVI-2; LST |
Faraslis et al. [89] | Olive, grapevine and others | Global | GEE | NDVI; VHI; TCI |
Bambach et al. [82] | Grapevine | Regional | NASA platforms | MCD15A3 |
Lopez-Fornieles et al. [95] | Grapevine | Regional | GEE | Sentinel-2 bands |
Carrasco-Benavides et al. [57] | Grapevine | Regional | GEE; NASA platforms; METRIC | NDVI; SAVI; LAI; LST |
Doherty et al. [83] | Grapevine | Regional | NASA platforms; SIMS | NDVI |
Kisekka et al. [58] | Grapevine | Local | NASA platforms; pySEBAL | S-SEBI; NDVI |
Awada et al. [38] | Grapevine | Local | U.S. Geological Surveys (USGS); SEBAL | S-SEBI; NDVI |
Ohana-Levi et al. [69] | Grapevine | Local | NASA platforms; ALEXI | NDVI; LAI; LST |
Bhattarai et al. [98] | Grapevine | Local | U.S. Geological Surveys (USGS) | NDVI; LAI |
Safre et al. [99] | Grapevine | Local | Copernicus Services Data Hub | NDVI; LST |
Mendes et al. [36] | Grapevine | Local | Copernicus Services Data Hub | Sentinel-1 and Sentinel-2 bands |
Ramos et al. [102] | Grapevine | Local | Copernicus Services Data Hub | NDVI; LAI |
Arab et al. [12] | Grapevine | Regional | U.S. Geological Surveys (USGS) | NDVI; NDWI; LAI; |
Laroche-Pinel et al. [104] | Grapevine | Regional | THEIA platform | NDVI; NDRE; NDII; MSI; REP |
García-Gutiérrez et al. [61] | Grapevine | Local | TSEB | NDVI; LAI; LST |
Bellvert et al. [109] | Grapevine | Local | TSEB | LST |
Knipper et al. [63] | Grapevine | Local | ALEXI/DisALEXI | MCD15A3H |
Borgogno-Mondino et al. [86] | Grapevine | Local | EarthExplorer web system | NDVI; NDWI |
Borgogno-Mondino et al. [87] | Grapevine | Local | EarthExplorer web system | NDVI; NDWI |
Helman et al. [112] | Grapevine | Regional | GEE | NDVI; GNDVI; EVI; SAVI |
Autovino et al. [76] | Grapevine | Regional | ORNL DAAC | LST; MOD16A2; MCD43A3 |
Campos et al. [52] | Grapevine | Local | — | NDVI; SAVI |
Gentile et al. [53] | Grapevine | Local | SEBAL | NDVI; SAVI |
Johnson et al. [55] | Grapevine | Local | ArcGIS | NDVI; LAI |
Semmens et al. [78] | Grapevine | Local | ALEXI/DISALEXI; STARFM; TSEB | MCD15A3 |
Tao et al. [66] | Grapevine and others | Local | Copernicus Services Data Hub; TSEB | NDVI; NDWI; EVI; VCI; VSWI; TCI; CWSI; LST |
Potopová et al. [79] | Grapevine and others | National | R software | EVI; SWI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo, N.; Pádua, L.; Santos, J.A.; Fraga, H. Satellite Remote Sensing Tools for Drought Assessment in Vineyards and Olive Orchards: A Systematic Review. Remote Sens. 2024, 16, 2040. https://doi.org/10.3390/rs16112040
Crespo N, Pádua L, Santos JA, Fraga H. Satellite Remote Sensing Tools for Drought Assessment in Vineyards and Olive Orchards: A Systematic Review. Remote Sensing. 2024; 16(11):2040. https://doi.org/10.3390/rs16112040
Chicago/Turabian StyleCrespo, Nazaret, Luís Pádua, João A. Santos, and Helder Fraga. 2024. "Satellite Remote Sensing Tools for Drought Assessment in Vineyards and Olive Orchards: A Systematic Review" Remote Sensing 16, no. 11: 2040. https://doi.org/10.3390/rs16112040
APA StyleCrespo, N., Pádua, L., Santos, J. A., & Fraga, H. (2024). Satellite Remote Sensing Tools for Drought Assessment in Vineyards and Olive Orchards: A Systematic Review. Remote Sensing, 16(11), 2040. https://doi.org/10.3390/rs16112040