A WebGIS-Based System for Supporting Saline–Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Requirement Analysis
2.3. Data Collection and Processing
2.3.1. Remote Sensing Data
2.3.2. Air Quality Data
2.3.3. Data on Soil Properties
- (1)
- Soil salinity was determined using the quality method.
- (2)
- The soil pH value was determined using the potentiometric method.
- (3)
- Determination of the heavy metal content in soil.
2.4. Risk Assessment of Heavy Metals in Soil
2.4.1. Single Pollution Index
2.4.2. Nemero Comprehensive Pollution Index
2.4.3. Hakanson Potential Ecological Risk Index
2.5. System Architecture
2.5.1. Performance Layer
2.5.2. Application Layer
2.5.3. Data Analysis Layer
- (1)
- Hyperparameter optimization machine learning model
- ①
- TPE hyperparameter optimization
- ②
- RF
- ③
- GBDT
- (2)
- Cross-platform deployment of machine learning models (PMML, JPMML)
- (3)
- Database design
3. Design of WebGIS System Functions
3.1. Data Statistical Analysis
3.1.1. Air Quality Monitoring
3.1.2. Vegetation Index Analysis
3.1.3. Soil Texture Analysis
3.2. Soil Health Assessment
3.2.1. Ecological Risk Assessment
3.2.2. Evaluation of Spatial Variability of Soil Properties
3.3. Spatial Prediction of Soil Salinity
3.3.1. TPE–ML Prediction
3.3.2. SHAP-Based Variable Importance Analysis
3.4. Data Management
4. Discussion
4.1. The Application Prospect of Hyperparameter Optimization Machine Learning in the WebGIS System
4.2. The Synergy of Multi-Source Environmental Variables in the WebGIS System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kogel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Kong, X. China must protect high-quality arable land. Nature 2014, 506, 7. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; Yuan, X.Z.; Jia, Y.; Feng, L.J.; Zhu, F.P.; Dong, S.S.; Liu, J.; Kong, X.; Tian, H.; Duan, J.L.; et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020, 15, 755–760. [Google Scholar] [CrossRef]
- Hou, P.; Jiang, Y.; Yan, L.; Petropoulos, E.; Wang, J.; Xue, L.; Yang, L.; Chen, D. Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands: A meta-analysis. Sci. Total Environ. 2021, 793, 148554. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, G.; Li, Y.; Zhang, X.; Xiong, Y.; Huang, Q.; Jin, S. Effects of the lignite bioorganic fertilizer on greenhouse gas emissions and pathways of nitrogen and carbon cycling in saline-sodic farmlands at Northwest China. J. Clean. Prod. 2022, 334, 130080. [Google Scholar] [CrossRef]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Yang, Z.; Shi, W.; Yang, W.; Liang, L.; Yao, W.; Chai, L.; Gao, S.; Liao, Q. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. Chemosphere 2018, 206, 83–91. [Google Scholar] [CrossRef]
- de Paul Obade, V.; Lal, R. Assessing land cover and soil quality by remote sensing and geographical information systems (GIS). Catena 2013, 104, 77–92. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Z.; Yu, T.; Hou, Q.; Mutelo, A.M. Detecting changes of soil environmental parameters by statistics and GIS: A case from the lower Changjiang plain, China. J. Geochem. Explor. 2017, 181, 116–128. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Hliaoutakis, A.; Argyriou, A.V.; Morianou, G.; Voulgarakis, A.E.; Kokinou, E.; Daliakopoulos, I.N.; Kalderis, D.; Tzerakis, K.; Psarras, G.; et al. A web-based GIS platform supporting innovative irrigation management techniques at farm-scale for the Mediterranean island of Crete. Sci. Total Environ. 2022, 842, 156918. [Google Scholar] [CrossRef] [PubMed]
- Mourato, S.; Fernandez, P.; Marques, F.; Rocha, A.; Pereira, L. An interactive Web-GIS fluvial flood forecast and alert system in operation in Portugal. Int. J. Disast. Risk Re. 2021, 58, 102201. [Google Scholar] [CrossRef]
- Yong, M.; Zhang, M.; Wang, S.; Liu, G. A Flex and ArcGIS Server based system for farmland environmental quality assessment and prediction in an agricultural producing area. Comput. Electron. Agric. 2015, 112, 193–199. [Google Scholar] [CrossRef]
- McCord, P.; Tonini, F.; Liu, J. The Telecoupling GeoApp: A Web-GIS application to systematically analyze telecouplings and sustainable development. Appl. Geogr. 2018, 96, 16–28. [Google Scholar] [CrossRef]
- Kawasaki, A.; Berman, M.L.; Guan, W. The growing role of web-based geospatial technology in disaster response and support. Disasters 2013, 37, 201–221. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, D.; Yun, W.; Peng, F.; Li, L. A WebGIS-based decision support system for locust prevention and control in China. Comput. Electron. Agric. 2017, 140, 148–158. [Google Scholar] [CrossRef]
- Feng, Q.; Flanagan, D.C.; Engel, B.A.; Yang, L.; Chen, L. GeoAPEXOL, a web GIS interface for the Agricultural Policy Environmental eXtender (APEX) model enabling both field and small watershed simulation. Environ. Modell. Softw. 2020, 123, 104569. [Google Scholar] [CrossRef]
- Cao, Q.; Yang, L.; Ren, W.; Song, Y.; Huang, S.; Wang, Y.; Wang, Z. Spatial distribution of harmful trace elements in Chinese coalfields: An application of WebGIS technology. Sci. Total Environ. 2021, 755, 142527. [Google Scholar] [CrossRef]
- Alvioli, M.; Falcone, G.; Mendicelli, A.; Mori, F.; Fiorucci, F.; Ardizzone, F.; Moscatelli, M. Seismically induced rockfall hazard from a physically based model and ground motion scenarios in Italy. Geomorphology 2023, 429, 108652. [Google Scholar] [CrossRef]
- Biolchi, L.G.; Unguendoli, S.; Bressan, L.; Giambastiani, B.M.S.; Valentini, A. Ensemble technique application to an XBeach-based coastal Early Warning System for the Northwest Adriatic Sea (Emilia-Romagna region, Italy). Coast. Eng. 2022, 173, 104081. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, H.; Niu, C.; Jiang, Y.; Gan, H.; Xing, Z.; Zhao, X.; Zhao, Z. A WebGIS-based system for rainfall-runoff prediction and real-time water resources assessment for Beijing. Comput. Geosci. 2009, 35, 1517–1528. [Google Scholar] [CrossRef]
- Thiebes, B.; Bell, R.; Glade, T.; Jäger, S.; Anderson, M.; Holcombe, L. A WebGIS decision-support system for slope stability based on limit-equilibrium modelling. Eng. Geol. 2013, 158, 109–118. [Google Scholar] [CrossRef]
- Zuan, C.; Jingyu, B. The Design of Typhoon Meteorological Information System and its Implementation Based on WebGIS. Procedia Environ. Sci. 2011, 10, 420–426. [Google Scholar] [CrossRef]
- Habibi, V.; Ahmadi, H.; Jafari, M.; Moeini, A. Machine learning and multispectral data-based detection of soil salinity in an arid region, Central Iran. Environ. Monit. Assess. 2020, 192, 759. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Ji, Q.; Chen, J.; Zhang, F.; Li, Y.; Fan, J.; Hou, X.; Yan, F.; Wang, H. Prediction of soil salinity parameters using machine learning models in an arid region of northwest China. Comput. Electron. Agric. 2023, 204, 107512. [Google Scholar] [CrossRef]
- Azizi, K.; Ayoubi, S.; Nabiollahi, K.; Garosi, Y.; Gislum, R. Predicting heavy metal contents by applying machine learning approaches and environmental covariates in west of Iran. J. Geochem. Explor. 2022, 233, 106921. [Google Scholar] [CrossRef]
- Liu, G.; Tian, S.; Xu, G.; Zhang, C.; Cai, M. Combination of effective color information and machine learning for rapid prediction of soil water content. J. Rock Mech. Geotech. 2023, 15, 2441–2457. [Google Scholar] [CrossRef]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Nature: New York, NY, USA, 2019. [Google Scholar]
- Chen, B.; Zheng, H.; Luo, G.; Chen, C.; Bao, A.; Liu, T.; Chen, X. Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization. Int. J. Remote Sens. 2022, 43, 778–811. [Google Scholar] [CrossRef]
- Yan, H.; Yan, K.; Ji, G. Optimization and prediction in the early design stage of office buildings using genetic and XGBoost algorithms. Build. Environ. 2022, 218, 109081. [Google Scholar] [CrossRef]
- Song, Y.; Zhan, D.; He, Z.; Li, W.; Duan, W.; Yang, Z.; Lu, M. HPO-empowered machine learning with multiple environment variables enables spatial prediction of soil heavy metals in coastal delta farmland of China. Comput. Electron. Agric. 2023, 213, 108254. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Wu, C.; Goh, A.T.C.; Lacasse, S.; Liu, Z.; Liu, H. State-ofthe-art review of soft computing applications in underground excavations. Geosci. Front. 2020, 11, 1095–1106. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, D.; Yin, Y.; Li, Z.; Hu, Z. An XGBoost-based casualty prediction method for terrorist attacks. Complex Intell. Syst. 2020, 6, 721–740. [Google Scholar] [CrossRef]
- Zhan, D.; Mu, Y.; Duan, W.; Ye, M.; Song, Y.; Song, Z.; Yao, K.; Sun, D.; Ding, Z. Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data. Agriculture 2023, 13, 1088. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, W.; Xu, L.; Meng, F.; Li, J.; Zhangzhong, L. TPE-CatBoost: An adaptive model for soil moisture spatial estimation in the main maize-producing areas of China with multiple environment covariates. J. Hydrol. 2022, 613, 128465. [Google Scholar] [CrossRef]
- Chen, C.; Seo, H. Prediction of rock mass class ahead of TBM excavation face by ML and DL algorithms with Bayesian TPE optimization and SHAP feature analysis. Acta Geotech. 2023, 18, 3825–3848. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, F.; Garcia-Garcia, A.; Zhang, J.; Li, J.; Ma, S.; Li, S.; Peng, J. The response and sensitivity of global vegetation to water stress: A comparison of different satellite-based NDVI products. Int. J. Appl. Earth Obs. 2023, 120, 103341. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Lam, E.J.; Urrutia, J.; Bech, J.; Herrera, C.; Montofre, I.L.; Zetola, V.; Alvarez, F.A.; Canovas, M. Heavy metal pollution index calculation in geochemistry assessment: A case study on Playa Las Petroleras. Environ. Geochem. Health 2023, 45, 409–426. [Google Scholar] [CrossRef]
- Tang, M.; Hou, J. Statistical Analysis and Evaluation of Heavy Metal Ions in Soil Environment. Open Access Libr. J. 2016, 03, 1–8. [Google Scholar] [CrossRef]
- Yan, F.; Li, N.; Wang, J.; Wu, H. Ecological footprint model of heavy metal pollution in water environment based on the potential ecological risk index. J. Environ. Manag. 2023, 344, 118708. [Google Scholar] [CrossRef] [PubMed]
- Sá, D.; Guimarães, T.; Abelha, A.; Santos, M.F. Low Code Approach for Business Analytics. Procedia Compu. Sci. 2024, 231, 421–426. [Google Scholar] [CrossRef]
- Li, D.; Mei, H.; Shen, Y.; Su, S.; Zhang, W.; Wang, J.; Zu, M.; Chen, W. ECharts: A declarative framework for rapid construction of web-based visualization. Visual Inform. 2018, 2, 136–146. [Google Scholar] [CrossRef]
- Suryotrisongko, H.; Jayanto, D.P.; Tjahyanto, A. Design and Development of Backend Application for Public Complaint Systems Using Microservice Spring Boot. Procedia Comput. Sci. 2017, 124, 736–743. [Google Scholar] [CrossRef]
- Li, Y.; Gao, S.; Pan, J.; Guo, B.F.; Xie, P.F. Research and Application of Template Engine for Web Back-end Based on MyBatis-Plus. Procedia Comput. Sci. 2020, 166, 206–212. [Google Scholar] [CrossRef]
- Jiang, B.N.; Zhang, Y.Y.; Zhang, Z.Y.; Yang, Y.L.; Song, H.L. Tree-structured parzen estimator optimized-automated machine learning assisted by meta-analysis for predicting biochar-driven N(2)O mitigation effect in constructed wetlands. J. Environ. Manag. 2024, 354, 120335. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef] [PubMed]
- Cutler, D.R.; Edwards, T.J.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, J.; Zhao, A.; Zhou, X. Predictive model of cooling load for ice storage air-conditioning system by using GBDT. Energy Rep. 2021, 7, 1588–1597. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Zeng, F.; Song, P.; Baffour, B.A.; Wang, P.; Wang, W.; Li, L. Volcanic lithology identification based on parameter-optimized GBDT algorithm: A case study in the Jilin Oilfield, Songliao Basin, NE China. J. Appl. Geophys. 2021, 194, 104443. [Google Scholar] [CrossRef]
- Ren, X.; Mi, Z.; Cai, T.; Nolte, C.G.; Georgopoulos, P.G. Flexible Bayesian Ensemble Machine Learning Framework for Predicting Local Ozone Concentrations. Environ. Sci. Technol. 2022, 56, 3871–3883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, L.; Ren, Z.; Yu, Y.; Li, Y.; Pan, J.; Lu, Y.; Feng, L.; Zhang, W.; Han, Y. Plant-scale biogas production prediction based on multiple hybrid machine learning technique. Bioresour. Technol. 2022, 363, 127899. [Google Scholar] [CrossRef] [PubMed]
- Rahrooh, A.; Garlid, A.O.; Bartlett, K.; Coons, W.; Petousis, P.; Hsu, W.; Bui, A.A.T. Towards a framework for interoperability and reproducibility of predictive models. J. Biomed. Inform. 2024, 149, 104551. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Um, J. Integrating Predictive Model Markup Language with Asset Administration Shell. IFAC-Pap. 2023, 56, 9823–9830. [Google Scholar] [CrossRef]
- Sciortino, R.; Micale, R.; Enea, M.; La Scalia, G. A webGIS-based system for real time shelf life prediction. Comput. Electron. Agric. 2016, 127, 451–459. [Google Scholar] [CrossRef]
- Sraitih, M.; Jabrane, Y.; Hajjam, E.H.A. An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques. J. Clin. Med. 2021, 10, 5450. [Google Scholar] [CrossRef]
- Nguyen, H.; Liu, J.; Zio, E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators. Appl. Soft Comput. 2020, 89, 106116. [Google Scholar] [CrossRef]
- Wang, S.; Gao, W.; Ming, J.; Li, L.; Xu, D.; Liu, S.; Lu, J. A TPE based inversion of PROSAIL for estimating canopy biophysical and biochemical variables of oilseed rape. Comput. Electron. Agric. 2018, 152, 350–362. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Song, H.; Wang, W. Deep learning model based on urban multi-source data for predicting heavy metals (Cu, Zn, Ni, Cr) in industrial sewer networks. J. Hazard. Mater. 2022, 432, 128732. [Google Scholar] [CrossRef]
- Zheng, J.; Yuan, S.; Wu, W.; Li, W.; Yu, L.; Fu, H.; Coomes, D. Surveying coconut trees using high-resolution satellite imagery in remote atolls of the Pacific Ocean. Remote Sens. Environ. 2023, 287, 113485. [Google Scholar] [CrossRef]
- Mallinis, G.; Chalkidou, S.; Roustanis, T.; Kokkoris, I.P.; Chrysafis, I.; Karolos, I.; Vagiona, D.; Kavvadia, A.; Dimopoulos, P.; Mitsopoulos, I. A national scale web mapping platform for mainstreaming ecosystem services in Greece. Ecol. Inform. 2023, 78, 102349. [Google Scholar] [CrossRef]
- Heng, T.; He, X.; Yang, L.; Xu, X.; Feng, Y. Mechanism of Saline–Alkali land improvement using subsurface pipe and vertical well drainage measures and its response to agricultural soil ecosystem. Environ. Pollut. 2022, 293, 118583. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, D.; Kumari, R. Cloud-based large-scale data retrieval, mapping, and analysis for land monitoring applications with Google Earth Engine (GEE). Environ. Chall. 2022, 9, 100605. [Google Scholar] [CrossRef]
Grade | Range | Grade Division | Explanation |
---|---|---|---|
1 | PTotal ≤ 0.7 | Safety | Clean level, crop healthy. |
2 | 0.7 < PTotal ≤ 1 | Warning level | Critical cleaning, limited use. |
3 | 1 < PTotal ≤ 2 | Light pollution | Slight pollution, crops are at risk. |
4 | 2 < PTotal ≤ 3 | Moderate pollution | Moderate pollution, crop risk is high. |
5 | PTotal > 3 | Heavy pollution | Heavy pollution, crop risk is extremely high. |
Heavy Metal | As | Pb | Zn | Total |
---|---|---|---|---|
Toxicity coefficient | 10 | 5 | 1 | - |
Grade Division | RI | Grade Division | |
---|---|---|---|
<40 | Low ecological risk | <150 | Slight ecological risks |
40–80 | Medium ecological risk | 150–300 | Medium ecological risk |
80–160 | Heavy ecological risk | 300–600 | Strong ecological risks |
160–320 | Severe ecological risk | ≥600 | Extremely strong ecological risk |
≥320 | Extremely heavy ecological risk | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Pan, Y.; Xiang, M.; Yang, W.; Zhan, D.; Wang, X.; Lu, M. A WebGIS-Based System for Supporting Saline–Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China. Remote Sens. 2024, 16, 1948. https://doi.org/10.3390/rs16111948
Song Y, Pan Y, Xiang M, Yang W, Zhan D, Wang X, Lu M. A WebGIS-Based System for Supporting Saline–Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China. Remote Sensing. 2024; 16(11):1948. https://doi.org/10.3390/rs16111948
Chicago/Turabian StyleSong, Yingqiang, Yinxue Pan, Meiyan Xiang, Weihao Yang, Dexi Zhan, Xingrui Wang, and Miao Lu. 2024. "A WebGIS-Based System for Supporting Saline–Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China" Remote Sensing 16, no. 11: 1948. https://doi.org/10.3390/rs16111948
APA StyleSong, Y., Pan, Y., Xiang, M., Yang, W., Zhan, D., Wang, X., & Lu, M. (2024). A WebGIS-Based System for Supporting Saline–Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China. Remote Sensing, 16(11), 1948. https://doi.org/10.3390/rs16111948