Application of UAV Push-Broom Hyperspectral Images in Water Quality Assessments for Inland Water Protection: A Case Study of Zhang Wei Xin River in Dezhou Distinct, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Water Quality Assessment Workflow Based on UAV Hyperspectral Images
3. Water Quality Parameter Extraction Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Li, J.S.; Shen, Q.; Wu, Y.H.; Zhang, F.F.; Wang, S.L.; Yao, Y.; Guo, L.N.; Yin, Z.Y. Recent research progress on long time series and large scale optical remote sensing of inland water. Natl. Remote Sens. Bull. 2021, 25, 37–52. [Google Scholar] [CrossRef]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.A.; Johnson, M.V.; Morton, S.L.; Perkins, D.A.K.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Remote Sens. Environ. 2016, 240, 111619. [Google Scholar] [CrossRef] [PubMed]
- Fichot, C.G.; Downing, B.D.; Bergamaschi, B.A.; Windham-Myers, L.; MarvinDiPasquale, M.; Thompson, D.R.; Gierach, M.M. High-Resolution Remote Sensing of Water Quality in the San Francisco Bay-Delta Estuary. Environ. Sci. Technol. 2016, 50, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, M.Y.; Chen, Y.H.; Chen, G.; Liu, H.L.; Xing, Q.G.; Cai, J.N. Water quality retrieval by hyperspectral for city rivers in Pearl River Estuary based on partial least squares regression. Water Resour. Prot. 2021, 37, 36–42. [Google Scholar]
- Zhang, Y.S.; Wu, L.; Ren, H.Z.; Liu, Y.; Zheng, Y.Q.; Liu, Y.W.; Dong, J.J. Mapping Water Quality Parameters in Urban Rivers from Hyperspectral Images Using a New Self-Adapting Selection of Multiple Artificial Neural Networks. Remote Sens. 2020, 12, 336. [Google Scholar] [CrossRef]
- Guimaraes, T.T.; Veronez, M.R.; Koste, E.C.; Gonzaga, L.; Bordin, F.; Inocencio, L.C.; Larocca, A.P.C.; de Oliveira, M.Z.; Vitti, D.C.; Mauad, F.F. An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing. Int. J. Remote Sens. 2020, 9, 416. [Google Scholar] [CrossRef]
- Kim, G.; Baek, I.; Stocker, M.D.; Smith, J.E.; Van Tassel, A.L.; Qin, J.W.; Chan, E.D.; Pachepsky, Y.; Kim, M.S. Hyperspectral Imaging from a Multipurpose Floating Platform to Estimate Chlorophyll-a Concentrations in Irrigation Pond Water. Remote Sens. 2020, 12, 2070. [Google Scholar] [CrossRef]
- Cheng, L.; Tan, X.Y.; Yao, D.; Xu, W.X.; Wu, H.Y.; Chen, Y. A Fishery Water Quality Monitoring and Prediction Evaluation System for Floating UAV Based on Time Series. Sensors 2021, 21, 4451. [Google Scholar] [CrossRef] [PubMed]
- Su, T.C.; Chou, H.T. Application of Multispectral Sensors Carried on Unmanned Aerial Vehicle (UAV) to Trophic State Mapping of Small Reservoirs: A Case Study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef]
- Mcilwaine, B.; Rivas Casado, M.; Leinster, P. Using 1st derivation reflectance signatures within a remote sensing framework to identify macroalgae in marine environments. Remote Sens. 2019, 11, 704. [Google Scholar] [CrossRef]
- McEliece, R.; Hinz, S.; Guarini, J.M.; Coston-Guarini, J. Evaluation of Nearshore and Offshore Water Quality Assessment Using UAV Multispectral Imagery. Remote Sens. 2020, 12, 2258. [Google Scholar] [CrossRef]
- Kieu, H.T.; Law, A.W.-K. Remote sensing of coastal hydro-environment with portable unmanned aerial vehicles (pUAVs) a state-of-the-art review. J. Hydro-Environ. Res. 2021, 37, 32–45. [Google Scholar] [CrossRef]
- Zeng, C.Q.; Richardson, M.; King, D.J. The impacts of environmental variables on water reflectance measured using a lightweight unmanned aerial vehicle (UAV)-based spectrometer system. ISPRS J. Photogramm. Remote Sens. 2017, 130, 217–230. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 2013, 130, 254–265. [Google Scholar] [CrossRef]
- Kim, J.S.; Seo, I.W.; Baek, D. Modeling spatial variability of harmful algal bloom in regulated rivers using a depth-averaged 2D numerical model. J. Hydro-Environ. Res. 2018, 20, 63–76. [Google Scholar] [CrossRef]
- Goddijn, L.M.; White, M. Using a digital camera for water quality measurements in Galway Bay. Estuar. Coast. Shelf Sci. 2006, 66, 429–436. [Google Scholar] [CrossRef]
- Lim, H.S.; MatJafri, M.Z.; Abdullah, K. Algorithm for turbidity mapping using digital camera images from a low-altitude light aircraft. In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 200–204. [Google Scholar]
- Jiang, Q.O.; Xu, L.D.; Sun, S.Y.; Wang, M.L.; Xiao, H.J. Retrieval model for total nitrogen concentration based on UAV hyperspectral remote sensing data and machine learning algorithms—A case study in the Miyun Reservoir, China. Ecol. Indic. 2021, 124, 107356. [Google Scholar]
- Yi, L.; Chen, J.M.; Zhang, G.; Xu, X.; Ming, X.; Guo, W. Seamless Mosaicking of UAV-Based Push-Broom Hyperspectral Images for Environment Monitoring. Remote Sens. 2021, 13, 4720. [Google Scholar] [CrossRef]
- Guo, W.J.; Yu, G.L.; Liu, X.Y.; Chen, Y.X. Water environment multi-parameter retrieval and monitor technique based on UAV-based hyperspectral imaging system. In Proceedings of the Chinese Hydraulic Engineering Society (CHES) Annual Conference, Nanchang, China, 18–22 October 2018. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Tsai, M.-S.; Tsai, J.T.H.; Lu, C.-C. Prediction of Carlson Trophic State Index of Small Inland Water from UAV-Based Multispectral Image Modeling. Appl. Sci. 2023, 13, 451. [Google Scholar] [CrossRef]
- Huang, X.-X.; Ying, H.-T.; Xia, K.; Feng, H.-L.; Yang, Y.-H.; Du, X.-C. Inversion of Water Quality Parameters Based on UAV Multispectral Images and the OPT-MPP Algorithm. Environ. Sci. 2020, 41, 3591–3600. [Google Scholar] [CrossRef]
Testing Samples | TP (mg/L) | Chla (mg/L) | TSS (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
Measured | Retrieval | Deviation Degree (%) | Measured | Retrieval | Deviation Degree (%) | Measured | Retrieval | Deviation Degree (*) (%) | |
1 | 0.0605 | 0.0714 | 18.01 | 0.3233 | 0.3007 | −6.99 | 22 | 25 | 13.63 |
2 | 0.0837 | 0.0774 | −7.52 | 0.2452 | 0.244 | −0.48 | 28 | 30 | 7.14 |
3 | 0.0771 | 0.0699 | −9.33 | 0.2306 | 0.2587 | 12.18 | 33 | 38 | 15.15 |
4 | 0.0946 | 0.1159 | 22.51 | 0.178 | 0.157 | −11.79 | 41 | 50 | 21.95 |
5 | 0.0929 | 0.1131 | 21.74 | 0.2034 | 0.1986 | −2.35 | 52 | 53 | 1.92 |
6 | 0.1325 | 0.1521 | 14.79 | 0.1743 | 0.1572 | −9.81 | 91 | 82 | −9.89 |
7 | 0.1588 | 0.1323 | −16.68 | 0.2088 | 0.1845 | −11.63 | 82 | 79 | −3.65 |
8 | 0.0995 | 0.1211 | 21.70 | 0.2052 | 0.1564 | −23.78 | 63 | 56 | −11.11 |
9 | 0.135 | 0.1612 | 19.40 | 0.2034 | 0.1839 | −9.58 | 82 | 72 | −12.19 |
10 | 0.1327 | 0.1365 | 2.86 | 0.2325 | 0.2233 | −3.95 | 77 | 61 | −20.77 |
11 | 0.1703 | 0.1637 | −3.875 | 0.2724 | 0.2639 | −3.12 | 20 | 24 | 20.00 |
12 | 0.1506 | 0.1685 | 11.88 | 0.2252 | 0.2268 | 0.71 | 39 | 31 | −20.51 |
13 | 0.1404 | 0.1738 | 23.78 | 0.2288 | 0.2335 | 2.05 | 29 | 36 | 24.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, L.; Zhang, G.; Zhang, B. Application of UAV Push-Broom Hyperspectral Images in Water Quality Assessments for Inland Water Protection: A Case Study of Zhang Wei Xin River in Dezhou Distinct, China. Remote Sens. 2023, 15, 2360. https://doi.org/10.3390/rs15092360
Yi L, Zhang G, Zhang B. Application of UAV Push-Broom Hyperspectral Images in Water Quality Assessments for Inland Water Protection: A Case Study of Zhang Wei Xin River in Dezhou Distinct, China. Remote Sensing. 2023; 15(9):2360. https://doi.org/10.3390/rs15092360
Chicago/Turabian StyleYi, Lina, Guifeng Zhang, and Bowen Zhang. 2023. "Application of UAV Push-Broom Hyperspectral Images in Water Quality Assessments for Inland Water Protection: A Case Study of Zhang Wei Xin River in Dezhou Distinct, China" Remote Sensing 15, no. 9: 2360. https://doi.org/10.3390/rs15092360
APA StyleYi, L., Zhang, G., & Zhang, B. (2023). Application of UAV Push-Broom Hyperspectral Images in Water Quality Assessments for Inland Water Protection: A Case Study of Zhang Wei Xin River in Dezhou Distinct, China. Remote Sensing, 15(9), 2360. https://doi.org/10.3390/rs15092360