Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Methodology
3.2.1. Inception V3 Model Architecture
3.2.2. XGBoost Model Architecture
3.2.3. Model Implementation
3.2.4. Model Evaluation
3.2.5. SHAP Interpretation
4. Results
4.1. SHAP Explanation and Interpretation
4.2. Spatial and Temporal Probability Assessment
4.3. Validation and Threshold Evaluation
4.4. Model Performance Evaluation
5. Discussion
6. Conclusions
- ▪
- The hybrid Inception v3-Ensemble XGBoost model was found to be an effective and robust approach for SPA and its global acceptability should be further tested with new factors and geotectonic conditions.
- ▪
- The SHAP implementation builds more trust toward the implementation of ML models, thereby grasping data-mining models for SPA.
- ▪
- The study found the importance of the seismic gap as a predictor in SPA along with eight other factors confirming its insertion in the assessment.
- ▪
- The results show that Central Saudi Arabia, Egypt, and Sudan come under low probability levels (index values range from 0.002 to 0.093) dominating the major parts of the Arabian Peninsula. Very high probability index (falling under the index values ranging from 0.991 to 1) can be found in the Gulf of Aden, Red Sea, Iran, and Turkey.
- ▪
- The recent earthquake of Mw 7.8 and the corresponding aftershocks show the importance of this study and can be used to validate the obtained results.
- ▪
- This may substantially contribute to establishing seismic codes for buildings in the Arab’s pioneering project. Further, the results could provide relevant parameters to determine whether retrofitting is necessary to minimize ground-shaking effects in the Arabian Peninsula.
- ▪
- In earthquake SPA work, the inclusion of subduction-related parameters, fault surface area, and fault width is necessary for a better representation of seismic coupling and probability estimation.
- ▪
- Future works should include SHAP, Local Interpretable Model-Agnostic Explanations (LIME), and extreme deep learning models for long lead time–magnitude prediction in association with integrated earthquake research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yanilmaz, S.; Baskak, D.; Yucesan, M.; Gul, M. Extension of FEMA and SMUG Models with Bayesian Best-Worst Method for Disaster Risk Reduction. Int. J. Disaster Risk Reduct. 2021, 66, 102631. [Google Scholar] [CrossRef]
- USGS. USGS Science for a Changing World. 2022. Available online: https://www.usgs.gov/faqs/why-are-we-having-so-many-earthquakes-has-naturally-occurring-earthquake-activity-been (accessed on 18 November 2022).
- Pascucci, V.; Free, M.W.; Lubkowski, Z.A. Seismic Hazard and Seismic Design Requirements for the Arabian Peninsula Region. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Jackson, E.L. Response to Earthquake Hazard: The West Coast of North America. Environ. Behav. 1981, 13, 387–416. [Google Scholar] [CrossRef]
- Dowrick, D.J. Earthquake Risk Reduction; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0470869348. [Google Scholar]
- Bommer, J.J. Deterministic vs. Probabilistic Seismic Hazard Assessment: An Exaggerated and Obstructive Dichotomy. J. Earthq. Eng. 2002, 6, 43–73. [Google Scholar] [CrossRef]
- Magrin, A.; Peresan, A.; Kronrod, T.; Vaccari, F.; Panza, G.F. Neo-Deterministic Seismic Hazard Assessment and Earthquake Occurrence Rate. Eng. Geol. 2017, 229, 95–109. [Google Scholar] [CrossRef]
- Hardebeck, J.L. Stress Triggering and Earthquake Probability Estimates. J. Geophys. Res. Solid Earth 2004, 109, B04310. [Google Scholar] [CrossRef]
- Parsons, T. Significance of Stress Transfer in Time-dependent Earthquake Probability Calculations. J. Geophys. Res. Solid Earth 2005, 110, B05S02. [Google Scholar] [CrossRef]
- Shcherbakov, R.; Zhuang, J.; Zöller, G.; Ogata, Y. Forecasting the Magnitude of the Largest Expected Earthquake. Nat. Commun. 2019, 10, 4051. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.M.; Wenzel, F. Global Megathrust Earthquake Hazard—Maximum Magnitude Assessment Using Multi-Variate Machine Learning. Front. Earth Sci. 2019, 7, 136. [Google Scholar] [CrossRef]
- Gitis, V.G.; Derendyaev, A.B. Machine Learning Methods for Seismic Hazards Forecast. Geosciences 2019, 9, 308. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Al-Amri, A.; Lee, C.W.; Park, H. Earthquake Probability Assessment for the Indian Subcontinent Using Deep Learning. Sensors 2020, 20, 4369. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Naik, S.P.; Alamri, A.M. Earthquake Risk Assessment in NE India Using Deep Learning and Geospatial Analysis. Geosci. Front. 2021, 12, 101110. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Beydoun, G.; Sofyan, H.; Affan, M. Integrated Model for Earthquake Risk Assessment Using Neural Network and Analytic Hierarchy Process: Aceh Province, Indonesia. Geosci. Front. 2020, 11, 613–634. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Panahi, M.; Rezaie, F.; Blaschke, T. Multi-Hazard Probability Assessment and Mapping in Iran. Sci. Total Environ. 2019, 692, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, M.; Siddiqi, G.H.; Al-Zaid, R.; Arafah, A.; Necioglu, A.; Turkelli, N. A Basis for Evaluation of Seismic Hazard and Design Criteria for Saudi Arabia. Earthq. Spectra 1994, 10, 231–258. [Google Scholar] [CrossRef]
- Al-Haddad, M.S.; Siddiqi, G.H. Seismic Design Recommendations for Building Structures in Saudi Arabia. J. King Saud Univ. Sci. 1995, 7, 25–44. [Google Scholar] [CrossRef]
- Allen, M.; Jackson, J.; Walker, R. Late Cenozoic Reorganization of the Arabia-Eurasia Collision and the Comparison of Short-term and Long-term Deformation Rates. Tectonics 2004, 23, TC2008. [Google Scholar] [CrossRef]
- Vernant, P.; Nilforoushan, F.; Hatzfeld, D.; Abbassi, M.R.; Vigny, C.; Masson, F.; Nankali, H.; Martinod, J.; Ashtiani, A.; Bayer, R. Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman. Geophys. J. Int. 2004, 157, 381–398. [Google Scholar] [CrossRef]
- Hessami, K.; Jamali, F.; Tabassi, H. Major Active Faults of Iran; IIEES: Tehran, Iran, 2003. [Google Scholar]
- Al-shijbi, Y.; El-Hussain, I.; Deif, A.; Al-Kalbani, A.; Mohamed, A.M.E. Probabilistic Seismic Hazard Assessment for the Arabian Peninsula. Pure Appl. Geophys. 2019, 176, 1503–1530. [Google Scholar] [CrossRef]
- Bulut, F.; Bohnhoff, M.; Eken, T.; Janssen, C.; Kılıç, T.; Dresen, G. The East Anatolian Fault Zone: Seismotectonic Setting and Spatiotemporal Characteristics of Seismicity Based on Precise Earthquake Locations. J. Geophys. Res. Solid Earth 2012, 117, 7304. [Google Scholar] [CrossRef]
- Aldama-Bustos, G.; Bommer, J.J.; Fenton, C.H.; Stafford, P.J. Probabilistic Seismic Hazard Analysis for Rock Sites in the Cities of Abu Dhabi, Dubai and Ra’s Al Khaymah, United Arab Emirates. Georisk 2009, 3, 1–29. [Google Scholar] [CrossRef]
- El-Hussain, I.; Deif, A.; Al-Jabri, K.; Toksoz, N.; El-Hady, S.; Al-Hashmi, S.; Al-Toubi, K.; Al-Shijbi, Y.; Al-Saifi, M.; Kuleli, S. Probabilistic Seismic Hazard Maps for the Sultanate of Oman. Nat. Hazards 2012, 64, 173–210. [Google Scholar] [CrossRef]
- Babiker, N.; Mula, A.H.G. A Unified Mw-Based Earthquake Catalogue and Seismic Source Zones for the Red Sea Region. J. Afr. Earth Sci. 2015, 109, 168–176. [Google Scholar] [CrossRef]
- Huijer, C.; Harajli, M.; Sadek, S. Re-Evaluation and Updating of the Seismic Hazard of Lebanon. J. Seismol. 2016, 20, 233–250. [Google Scholar] [CrossRef]
- Coleman, R.G. Geologic Evolution of the Red Sea (Oxford Monographs on Geology and Geophysics, 24); Oxford University Press: New York, NY, USA, 1993; p. 186. [Google Scholar]
- Khan, M.; Ali, M. Optimization of Concrete Stiffeners for Confined Brick Masonry Structures. J. Build. Eng. 2020, 32, 101689. [Google Scholar] [CrossRef]
- Khan, M.; Lao, J.; Dai, J.-G. Comparative Study of Advanced Computational Techniques for Estimating the Compressive Strength of UHPC. J. Asian Concr. Fed. 2022, 8, 51–68. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sivaram, A.; Venkatasubramanian, V. AI-DARWIN: A First Principles-Based Model Discovery Engine Using Machine Learning. Comput. Chem. Eng. 2021, 154, 107470. [Google Scholar] [CrossRef]
- Irwandi, I. Advantages of Realistic Model Based on Computational Method: NDSHA versus Standard PSHA. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Shanghai, China, 19–22 October 2017; IOP Publishing: Shanghai, China, 2017; Volume 56, p. 12007. [Google Scholar]
- Shapley, L.S. Stochastic Games. Proc. Natl. Acad. Sci. USA 1953, 39, 1095–1100. [Google Scholar] [CrossRef]
- Schlegel, U.; Arnout, H.; El-Assady, M.; Oelke, D.; Keim, D.A. Towards a Rigorous Evaluation of Xai Methods on Time Series. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 4197–4201. [Google Scholar]
- Deif, A.; Al-Shijbi, Y.; El-Hussain, I.; Ezzelarab, M.; Mohamed, A.M.E. Compiling an Earthquake Catalogue for the Arabian Plate, Western Asia. J. Asian Earth Sci. 2017, 147, 345–357. [Google Scholar] [CrossRef]
- Farhoudi, G.; Karig, D.E. Makran of Iran and Pakistan as an Active Arc System. Geology 1977, 5, 664–668. [Google Scholar] [CrossRef]
- Beyer, K.; Bommer, J.J. Relationships between Median Values and between Aleatory Variabilities for Different Definitions of the Horizontal Component of Motion. Bull. Seismol. Soc. Am. 2006, 96, 1512–1522. [Google Scholar] [CrossRef]
- Fenton, C.H.; Adams, J.; Halchuk, S. Seismic Hazards Assessment for Radioactive Waste Disposal Sites in Regions of Low Seismic Activity. Geotech. Geol. Eng. 2006, 24, 579–592. [Google Scholar] [CrossRef]
- ArRajehi, A.; McClusky, S.; Reilinger, R.; Daoud, M.; Alchalbi, A.; Ergintav, S.; Gomez, F.; Sholan, J.; Bou-Rabee, F.; Ogubazghi, G. Geodetic Constraints on Present-day Motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden Rifting. Tectonics 2010, 29, TC3011. [Google Scholar] [CrossRef]
- Wason, H.R.; Das, R.; Sharma, M.L. Magnitude Conversion Problem Using General Orthogonal Regression. Geophys. J. Int. 2012, 190, 1091–1096. [Google Scholar] [CrossRef]
- Sakellariou, S.; Tampekis, S.; Samara, F.; Sfougaris, A.; Christopoulou, O. Review of State-of-the-Art Decision Support Systems (DSSs) for Prevention and Suppression of Forest Fires. J. For. Res. 2017, 28, 1107–1117. [Google Scholar] [CrossRef]
- Alizadeh, M.; Alizadeh, E.; Asadollahpour Kotenaee, S.; Shahabi, H.; Beiranvand Pour, A.; Panahi, M.; Bin Ahmad, B.; Saro, L. Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran. Sustainability 2018, 10, 3376. [Google Scholar] [CrossRef]
- Consultant, G. Final Report: Identification of Seismic Source’s Zone and Tsunami Hazard Probability as Considerations in Development Policy of Banda Aceh City; Nanggroe Aceh Darussalam Prov. (Package-1): Banda Aceh, Indonesia, 2009. [Google Scholar]
- Zebardast, E. Constructing a Social Vulnerability Index to Earthquake Hazards Using a Hybrid Factor Analysis and Analytic Network Process (F’ANP) Model. Nat. Hazards 2013, 65, 1331–1359. [Google Scholar] [CrossRef]
- Soe, M.; Ryutaro, T.; Ishiyama, D.; Takashima, I.; Charusiri, K.W.-I.P. Remote Sensing and GIS Based Approach for Earthquake Probability Map: A Case Study of the Northern Sagaing Fault Area, Myanmar. J. Geol. Soc. Thail 2009, 1, 29–46. [Google Scholar]
- Rashed, T.; Weeks, J. Assessing Vulnerability to Earthquake Hazards through Spatial Multicriteria Analysis of Urban Areas. Int. J. Geogr. Inf. Sci. 2003, 17, 547–576. [Google Scholar] [CrossRef]
- Dhar, S.; Rai, A.K.; Nayak, P. Estimation of Seismic Hazard in Odisha by Remote Sensing and GIS Techniques. Nat. Hazards 2017, 86, 695–709. [Google Scholar] [CrossRef]
- Alizadeh, M.; Ngah, I.; Hashim, M.; Pradhan, B.; Pour, A.B. A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) Model for Urban Earthquake Vulnerability Assessment. Remote Sens. 2018, 10, 975. [Google Scholar] [CrossRef]
- Kamranzad, F.; Memarian, H.; Zare, M. Earthquake Risk Assessment for Tehran, Iran. ISPRS Int. J. Geo-Inf. 2020, 9, 430. [Google Scholar] [CrossRef]
- Ramaneswaran, S.; Srinivasan, K.; Vincent, P.M.D.R.; Chang, C.-Y. Hybrid Inception v3 XGBoost Model for Acute Lymphoblastic Leukemia Classification. Comput. Math. Methods Med. 2021, 2021, 2577375. [Google Scholar] [CrossRef]
- Quinto, B. Introduction to Spark and Spark MLlib. In Next-Generation Machine Learning with Spark; Springer: Berlin/Heidelberg, Germany, 2020; pp. 29–96. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme Gradient Boosting. R Packag. Version 0.6-4 2015, 1, 1–4. [Google Scholar]
- Li, H.; Cao, Y.; Li, S.; Zhao, J.; Sun, Y. XGBoost Model and Its Application to Personal Credit Evaluation. IEEE Intell. Syst. 2020, 35, 52–61. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Z.; Qu, Y.; Xu, J.; Cao, Y. Application of the XGBoost Machine Learning Method in PM2. 5 Prediction: A Case Study of Shanghai. Aerosol Air Qual. Res. 2020, 20, 128–138. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Collaris, D.; Vink, L.M.; van Wijk, J.J. Instance-Level Explanations for Fraud Detection: A Case Study. arXiv 2018, arXiv:1806.07129. [Google Scholar]
- Somala, S.N.; Karthikeyan, K.; Mangalathu, S. Time Period Estimation of Masonry Infilled RC Frames Using Machine Learning Techniques. Structures 2021, 34, 1560–1566. [Google Scholar] [CrossRef]
- Matin, S.S.; Pradhan, B. Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI). Sensors 2021, 21, 4489. [Google Scholar] [CrossRef] [PubMed]
- Molnar, C. Interpretable Machine Learning; Lean Publishing: Victoria, BC, Canada, 2020; ISBN 0244768528. [Google Scholar]
- Asim, K.M.; Martínez-Álvarez, F.; Basit, A.; Iqbal, T. Earthquake Magnitude Prediction in Hindukush Region Using Machine Learning Techniques. Nat. Hazards 2017, 85, 471–486. [Google Scholar] [CrossRef]
- Huang, J.P.; Wang, X.A.; Zhao, Y.; Xin, C.; Xiang, H. Large Earthquake Magnitude Prediction in Taiwan Based on Deep Learning Neural Network. Neural Netw. World 2018, 28, 149–160. [Google Scholar] [CrossRef]
Date | Area | Magnitude | Intensity (MMI) | Deaths | Injuries | Remarks | Source |
---|---|---|---|---|---|---|---|
2009-05-19 | Madinah | 5.7 Mw | 7 | Landslides | USGS | ||
2009-05-17 | Umm Lajj | 4.6 Mb | Destruction | USGS | |||
2004-06-09 | Tabuk Region | 4.6 ML | Minor damage | USGS | |||
1995-11-22 | Egypt, Saudi Arabia, Israel, Jordan | 7.3 Mw | VIII | 9–12 | 30–69 | Moderate damage/tsunami | |
1072-03-16 | Yemen, Saudi Arabia | VIII | 50 | Moderate damage | NGDC | ||
1068-03-18 | Ramla, Jerusalem, Tabuk | ≥7.0 | IX | ~20,000 | Destruction | ||
551-07-09 | Lebanon, Egypt, Iraq, Saudi Arabia | 7.5 Mw | IX | 30,000+ | Tsunami |
Factors/30 m Resolution | Input Predictors | Methods | Code Name | Importance | References |
---|---|---|---|---|---|
Earthquake inventory | Magnitudes > Mw 5 |
| USGS, NEIC | ||
Seismological |
| Machine learning (XGBoost) | Slope Elevation Curvature Mag_var Dep_var Epic_den Seismic_gap Eq_freq |
| Sakellariou et al. [41] Alizadeh et al. [42] Gitamandalaksana [43]. Zebardast [44] Soe et al. [45] Rashed et al. [46] Introduced factor |
Geological | Geology | Explainable AI (SHAP) | Geology |
| Dhar et al. [47] |
Geo-structural |
| Prox_thrust TC_den |
| Alizadeh et al. [48] | |
Ground motion | PGA (cm/s2) | Probabilistic seismic hazard assessment using Joyner and Boore (1981) attenuation equations. | PGA |
| Kamranzad et al. [49] |
Parameters | Values |
---|---|
Include_top | True, |
Weights | “imagenet”, |
Input_tensor | None, |
Input shape | None, |
Pooling | None, |
Booster | gbtree |
Verbosity | 1 |
Validate parameters | True |
n-thread | Maximum |
Disable default evaluation metric | False |
Number of p-buffer | Automatic |
Number of features | Automatic |
Adam Optimizer | [0.9, 0.999] |
Learning rate | 1 × 10−4 |
Factors | Class | Importance (%) | Threshold | Factors | Class | Importance (%) | Threshold |
---|---|---|---|---|---|---|---|
Slope | 0–1.65 | 7 | >10 | Epicenter density | 0–2 | 10 | >8 |
1.65–4.95 | 2–4 | ||||||
4.95–9.90 | 4–6 | ||||||
9.90–17.60 | 6–8 | ||||||
17.60–70.14 | 8–10 | ||||||
Elevation | −10,921–−4078 | 9 | >458 | Seismic gap | 0–196 | 12 | >500 km |
−4078–−1694 | 196–392 | ||||||
−1694–458 | 392–500 | ||||||
458–1995 | 501–785 | ||||||
1995–8685 | 785–981 | ||||||
Curvature | −151,997–−4582 | 3 | <1479 | PGA | 0–34 | 14 | >100 cm/s2 |
−4582–−1479 | 35–90 | ||||||
−1479–1624 | 91–150 | ||||||
1624–6279 | 151–215 | ||||||
6279–243,695 | 216–380 | ||||||
Magnitude variation | 4.5–5.5 | 13 | >5.5 | Geology | Quartz-rich sands | 5 | Quartz-rich sand and Oceanic crust with high amplification |
5.5–5.8 | Oceanic crust | ||||||
5.8–6.0 | Dry soil | ||||||
6.0–6.38 | CaCO3 | ||||||
6.38–9.0 | Quartz-rich desert soil | ||||||
Frequency | 0–2 | 5 | >6 | Proximity to thrust faults | 0–50 | 6.5 | <50 km |
3–4 | 51–208 | ||||||
5–6 | 208–385 | ||||||
6–7 | 385–637 | ||||||
7–8 | 637–999 | ||||||
Depth variation | 0–30 | 8 | <30 km | Tectonic contacts density | 0–1 | 7.5 | >5 |
30–40 | 1–3 | ||||||
40–80 | 3–5 | ||||||
80–120 | 5–7 | ||||||
120–170 | 7–10 |
Confusion Matrix: | Predicted Condition | RMSE | R2 | ||
---|---|---|---|---|---|
Actual condition | Total population | PP (Positive) | PN (Negative) | 0.35 | 0.52 |
P (Positive) | 2943 | 527 | |||
N (Negative) | 308 | 3126 |
Classification Report: | Predicted Condition | |||
---|---|---|---|---|
Precision | Recall | F1-Score | Support | |
0 | 0.9053 | 0.8481 | 0.8758 | 3470 |
1 | 0.8557 | 0.9103 | 0.8822 | 3434 |
Accuracy | 0.8791 | 6904 | ||
Macro average | 0.8805 | 0.8792 | 0.8790 | 6904 |
Weighted average | 0.8806 | 0.8791 | 0.8790 | 6904 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jena, R.; Shanableh, A.; Al-Ruzouq, R.; Pradhan, B.; Gibril, M.B.A.; Khalil, M.A.; Ghorbanzadeh, O.; Ganapathy, G.P.; Ghamisi, P. Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula. Remote Sens. 2023, 15, 2248. https://doi.org/10.3390/rs15092248
Jena R, Shanableh A, Al-Ruzouq R, Pradhan B, Gibril MBA, Khalil MA, Ghorbanzadeh O, Ganapathy GP, Ghamisi P. Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula. Remote Sensing. 2023; 15(9):2248. https://doi.org/10.3390/rs15092248
Chicago/Turabian StyleJena, Ratiranjan, Abdallah Shanableh, Rami Al-Ruzouq, Biswajeet Pradhan, Mohamed Barakat A. Gibril, Mohamad Ali Khalil, Omid Ghorbanzadeh, Ganapathy Pattukandan Ganapathy, and Pedram Ghamisi. 2023. "Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula" Remote Sensing 15, no. 9: 2248. https://doi.org/10.3390/rs15092248
APA StyleJena, R., Shanableh, A., Al-Ruzouq, R., Pradhan, B., Gibril, M. B. A., Khalil, M. A., Ghorbanzadeh, O., Ganapathy, G. P., & Ghamisi, P. (2023). Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula. Remote Sensing, 15(9), 2248. https://doi.org/10.3390/rs15092248