Case Study of a Mesospheric Temperature Inversion over Maïdo Observatory through a Multi-Instrumental Observation
Abstract
:1. Introduction
2. Data and Analysis Methods
2.1. Data: Observations and Modeling
2.1.1. Radiosonde Data
2.1.2. Lidar Data
2.1.3. Nightglow Data
2.1.4. GROGRAT Model
2.1.5. Weather and Climate Models
2.1.6. Empirical Model of Horizontal Winds HWM14
2.2. Analysis Methods: Processing and Methodology
3. Results
3.1. MIL and GWs in the Middle Atmosphere on 9–10 October 2017
3.2. Sources of GWs and Vertical Propagation
3.2.1. Synoptic Pattern and GW Parameters in the Troposphere and the Stratosphere
3.2.2. Mesoscale Modeling in the Troposphere and the Stratosphere
3.2.3. Raytracing
3.3. GW Activity in the Airglow Measurements
4. Summary and Conclusions
- In the middle atmosphere, Rayleigh lidar observation revealed the presence of a MIL with an amplitude of about 30 K at about 80 km height in the upper mesosphere on 9 October 2017 which disappeared on the next day. Dominant modes with vertical wavelengths of about 3 km, 4–7 km and 12–13 km were observed on lidar temperature profiles. Successive Lidar temperature profiles showed evidence of dominant GW mode with a vertical wavelength of 12–13 km on 9 October 2017 with a downward phase progression and an observed period of ~ 5 h at heights of 30–70 km in the upper stratosphere and the mesosphere. Dissipation mechanisms or wave reflection were reported at the stratopause level. Modeling with WACCM showed a spatially extended inversion feature at the altitude of the MIL above La Réunion. Signatures of GW breaking from 65 km height supported GWs as the main wave dynamical process of the MIL. Additionally, weather and mesoscale modeling suggested that the stratospheric filtering by the background wind was the possible cause for the disappearance of the MIL on 10 October 2017.
- In the lower atmosphere, both observations and weather models supported that the RWB in the middle troposphere triggers GW activity at the subtropical barrier above La Réunion on 9–12 October 2017. Radiosonde data highlighted dominant low-frequency GW modes with vertical wavelengths of about 1.5–3 km and 4–7 km, periods of 5–27 h and horizontal wavelengths between 200 km and 1300 km at heights of 18–28 km with a dominant south-eastward horizontal propagation. High-resolution mesoscale modeling provided a fine description of the meteorological event and supported observations about GW characteristics in the lower atmosphere. The activity of GW kinetic energy near the source varied with periods of 5–10 h. Dominant GWs with vertical wavelengths of 2–3 km and ~ 6 km were clearly identified during their upward propagation from the source up to the stratosphere on 9–11 October. Mesoscale modeling and ray tracing also confirmed the important role of RWB for GW activity at the southern subtropical latitudes [75] and also upward wave propagation of tropospheric GW modes into the mesosphere. In particular, dominant mesospheric GW modes with vertical wavelengths of about 4–6 km and 10–13 km were traced down to the troposphere and up to the mesopause.
- In the upper mesosphere—mesopause, strong GW activity was also reported in SABER data on 9–11 October 2017 in the vicinity of La Réunion. Breaking waves were observed below the MIL and in the mesopause. Shorter and broader range wavelengths are observed in the mesopause in comparison with the upper mesosphere, probably because of the generation of secondary GWs due to breaking waves. A dominant GW with a vertical wavelength of 4–5 km was clearly visualized in the mesosphere up to 100 km in height in the lower thermosphere. At the OH layer around 87 km in height, several techniques were developed to extract spectral characteristics for high and low-frequency GWs using nightglow images on both nights. Modes with short periods of between 3.3 min and 2.1 h and horizontal wavelengths of 8–17 km on 9–10 October detected in the mesopause might be attributed to secondary waves due to wave breaking. The periodogram of the keograms identified a long period of about 8 h. Nightly variation of GW activity depending on GW periods was observed on nights of 9 and 10 October.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lübken, F.J. Physics in the mesosphere/lower thermosphere: A personal perspective. Front. Astron. Space Sci. 2022, 9, 1000766. [Google Scholar] [CrossRef]
- Gerber, E.P.; Butler, A.; Calvo, N.; Charlton-Perez, A.; Giorgetta, M.; Manzini, E.; Perlwitz, J.; Polvani, L.M.; Sassi, F.; Scaife, A.A.; et al. Assessing and understanding the impact of stratospheric dynamics and variability on the earth system. Bull. Am. Meteorol. Soc. 2012, 93, 845–859. [Google Scholar] [CrossRef] [Green Version]
- Martin, Z.; Vitart, F.; Wang, S.; Sobel, A. The impact of the stratosphere on the MJO in a forecast model. J. Geophys. Res. Atmos. 2020, 125, e2019JD032106. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Butler, A.H.; Charlton-Perez, A.J.; Ayarzagüena, B.; Baldwin, M.P.; Dunn-Sigouin, E.; Furtado, J.C.; Garfinkel, C.I.; Hitchcock, P.; Karpechko, A.Y.; et al. The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos. 2020, 125, e2019JD030920. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Gerber, E.P.; Shamir, O.; Rao, J.; Jucker, M.; White, I.; Paldor, N. A QBO cookbook: Sensitivity of the quasi-biennial oscillation to resolution, resolved waves, and parameterized gravity waves. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002568. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, M.; Garfinkel, C. Editorial: Stratosphere-troposphere coupling and its role in surface weather predictability. Front. Earth Sci. 2022, 10, 478. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Butler, A.H.; Charlton-Perez, A.J.; Ayarzagüena, B.; Baldwin, M.P.; Dunn-Sigouin, E.; Furtado, J.C.; Garfinkel, C.I.; Hitchcock, P.; Karpechko, A.Y.; et al. The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos. 2020, 125, e2019JD030923. [Google Scholar] [CrossRef]
- Ern, M.; Hoffmann, L.; Rhode, S.; Preusse, P. The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophys. Res. Lett. 2022, 49, e2022GL098626. [Google Scholar] [CrossRef]
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Hines, C.O.; Adams, G.W.; Brosnahan, J.W.; Djuth, F.T.; Sulzer, M.P.; Tepley, C.A.; Van Baelen, J. Multi-instrument observations of mesospheric motions over Arecibo: Comparisons and interpretations. J. Atmos. Terr. Phys. 1993, 55, 241–287. [Google Scholar] [CrossRef]
- Hickey, M.P.; Walterscheid, R.L.; Schubert, G. Gravity wave heating and cooling of the thermosphere: Sensible heat flux and viscous flux of kinetic energy. J. Geophys. Res. Space Phys. 2011, 116, A12326. [Google Scholar] [CrossRef] [Green Version]
- Reichert, R.; Kaifler, B.; Kaifler, N.; Rapp, M.; Pautet, P.-D.; Taylor, M.J.; Kozlovsky, A.; Lester, M.; Kivi, R. Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data. Atmos. Meas. Tech. 2019, 12, 5997–6015. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; McInerney, J.M.; Santos, S.; Lauritzen, P.H.; Taylor, M.A.; Pedatella, N.M. Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model. Geophys. Res. Lett. 2014, 41, 9106–9112. [Google Scholar] [CrossRef] [Green Version]
- Harvey, V.L.; Pedatella, N.; Becker, E.; Randall, C. Evaluation of polar winter mesopause wind in WACCMX+DART. J. Geophys. Res. Atmos. 2022, 127, e2022JD037063. [Google Scholar] [CrossRef]
- Mariaccia, A.; Keckhut, P.; Hauchecorne, A.; Claud, C.; Le Pichon, A.; Meftah, M.; Khaykin, S. Assessment of ERA-5 Temperature variability in the middle atmosphere using Rayleigh lidar measurements between 2005 and 2020. Atmosphere 2022, 13, 242. [Google Scholar] [CrossRef]
- Fritts, D.C.; Laughman, B.; Wang, L.; Lund, T.S.; Collins, R.L. Gravity wave dynamics in a mesospheric inversion layer: 1. Reflection, trapping, and instability dynamics. J. Geophys. Res. Atmos. 2018, 123, 626–648. [Google Scholar] [CrossRef] [Green Version]
- Ardalan, M.; Keckhut, P.; Hauchecorne, A.; Wing, R.; Meftah, M.; Farhani, G. Updated Climatology of Mesospheric Temperature Inversions Detected by Rayleigh Lidar above Observatoire de Haute Provence, France, Using a K-Mean Clustering Technique. Atmosphere 2022, 13, 814. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Chanin, M.L.; Wilson, R. Mesospheric temperature inversion and gravity wave breaking. Geophys. Res. Lett. 1987, 14, 933–936. [Google Scholar] [CrossRef]
- Wing, R.; Martic, M.; Triplett, C.; Hauchecorne, A.; Porteneuve, J.; Keckhut, P.; Courcoux, Y.; Yung, L.; Retailleau, P.; Cocuron, D. Gravity wave breaking associated with mesospheric inversion layers as measured by the Ship-Borne BEM Monge lidar and ICON-MIGHTI. Atmosphere 2021, 12, 1386. [Google Scholar] [CrossRef]
- Yuan, T.; Pautet, P.-D.; Zhao, Y.; Cai, X.; Criddle, N.R.; Taylor, M.J.; Pendleton, W.R. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah. J. Geophys. Res. Atmos. 2014, 119, 3756–3769. [Google Scholar] [CrossRef] [Green Version]
- Meriwether, J.W.; Gardner, C.S. A review of the mesosphere inversion layer phenomenon. J. Geophys. Res. Atmos. 2000, 105, 12405–12416. [Google Scholar] [CrossRef]
- Liu, H.L.; Meriwether, J.W. Analysis of a temperature inversion event in the lower mesosphere. J. Geophys. Res. Atmos. 2004, 109, D02S07. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Yang, G.; Chen, L.; Wang, J.; Du, L. Rayleigh lidar observations and comparisons with TIMED/SABER of typical case studies in Beijing (40.5°N, 116.2°E), China. Atmosphere 2021, 12, 1237. [Google Scholar] [CrossRef]
- Bègue, N.; Mbatha, N.; Bencherif, H.; Loua, R.T.; Sivakumar, V.; Leblanc, T. Statistical analysis of the mesospheric inversion layers over two symmetrical tropical sites: Réunion (20.8°S, 55.5°E) and Mauna Loa (19.5°N, 155.6°W). Ann. Geophys. 2017, 35, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, T.; Hauchecorne, A. Recent observations of mesospheric temperature inversions. J. Geophys. Res. Atmos. 1997, 102, 19471–19482. [Google Scholar] [CrossRef] [Green Version]
- Sassi, F.; Garcia, R.R.; Boville, B.A.; Liu, H. On temperature inversions and the mesospheric surf zone. J. Geophys. Res. Atmos. 2002, 107, 4380–4389. [Google Scholar] [CrossRef]
- Ramesh, K.; Sridharan, S.; Vijaya Bhaskara Rao, S. Causative mechanisms for the occurrence of a triple lyered mesospheric inversion event over low latitudes. J. Geophys. Res. Space Phys. 2014, 119, 3930–3943. [Google Scholar] [CrossRef]
- Singh, R.P.; Pallamraju, D. Mesospheric temperature inversions observed in OH and O2 rotational temperatures from Mount Abu (24.6°N, 72.8°E), India. J. Geophys. Res. Space Phys. 2018, 123, 8823–8834. [Google Scholar] [CrossRef]
- France, J.A.; Harvey, V.L.; Randall, C.E.; Collins, R.L.; Smith, A.K.; Peck, E.D.; Fang, X. A climatology of planetary wave-driven mesospheric inversion layers in the extratropical winter. J. Geophys. Res. Atmos. 2015, 120, 399–413. [Google Scholar] [CrossRef]
- Richter, J.H.; Garcia, R.R. On the Forcing of the mesospheric Semi-Annual Oscillation in the Whole Atmosphere Community Climate Model. Geophys. Res. Lett. 2006, 7, 925–935. [Google Scholar] [CrossRef]
- Wheeling, K. Machine learning improves weather and climate models. Eos 2020, 101. [Google Scholar] [CrossRef]
- Matsuoka, D.; Watanabe, S.; Sato, K.; Kawazoe, S.; Yu, W.; Easterbrook, S. Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets. Geophys. Res. Lett. 2020, 47, e2020GL089436. [Google Scholar] [CrossRef]
- Espinosa, Z.I.; Sheshadri, A.; Cain, G.R.; Gerber, E.P.; DallaSanta, K.J. Machine learning gravity wave parameterization generalizes to capture the QBO and response to increased CO2. Geophys. Res. Lett. 2022, 49, e2022GL098174. [Google Scholar] [CrossRef]
- Hindley, N.P.; Wright, C.J.; Smith, N.D.; Hoffmann, L.; Holt, L.A.; Alexander, M.J.; Moffat-Griffin, T.; Mitchell, N.J. Gravity waves in the winter stratosphere over the Southern Ocean: High-resolution satellite observations and 3-D spectral analysis. Atmos. Chem. Phys. 2019, 19, 15377–15414. [Google Scholar] [CrossRef] [Green Version]
- Mann, A. Core concept: Nascent exascale supercomputers offer promise, present challenges. Proc. Natl. Acad. Sci. USA 2020, 117, 22623–22625. [Google Scholar] [CrossRef]
- Chane Ming, F.; Ibrahim, C.; Barthe, C.; Jolivet, S.; Keckhut, P.; Liou, Y.A.; Kuleshov, Y. Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008). Atmos. Chem. Phys. 2014, 14, 641–658. [Google Scholar] [CrossRef] [Green Version]
- Baray, J.-L.; Courcoux, Y.; Keckhut, P.; Portafaix, T.; Tulet, P.; Cammas, J.P.; Hauchecorne, A.; Godin-Beekmann, S.; De Mazière, M.; Hermans, C.; et al. Maïdo observatory: A new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements. Atmos. Meas. Tech. 2013, 6, 2865–2877. [Google Scholar] [CrossRef] [Green Version]
- Keckhut, P.; Courcoux, Y.; Baray, J.-L.; Porteneuve, J.; Vérèmes, H.; Hauchecorne, A.; Dionisi, D.; Posny, F.; Cammas, J.-P.; Payen, G.; et al. Introduction to the Maïdo lidar calibration campaign dedicated to the validation of upper air meteorological parameters. J. Appl. Rem. Sens. 2015, 9, 094099. [Google Scholar] [CrossRef] [Green Version]
- Hauchecorne, A.; Chanin, M. Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett. 1980, 7, 565–568. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Atmos. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Keckhut, P.; Hauchecorne, A.; Chanin, M.L. A Critical Review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars. J. Atmos. Ocean. Tech. 1993, 10, 850–867. [Google Scholar] [CrossRef]
- Von Savigny, C.; McDade, I.C.; Eichmann, K.-U.; Burrows, J.P. On the dependence of the OH Meinel emission altitude on vibrational level: Sciamachy observations and model simulations. Atmos. Chem. Phys. 2012, 12, 8813–8828. [Google Scholar] [CrossRef] [Green Version]
- Mlynczak, M.G. Energetics of the mesosphere and lower thermosphere and the SABER experiment. Adv. Space Res. 1997, 20, 1177–1183. [Google Scholar] [CrossRef]
- Eckermann, S.D. Ray-tracing simulation of the global propagation of inertia gravity waves through the zonally averaged middle atmosphere. J. Geophys. Res. Atmos. 1992, 97, 15849–15866. [Google Scholar] [CrossRef]
- Marks, C.J.; Eckermann, S.D. A Three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci. 1995, 52, 1959–1984. [Google Scholar] [CrossRef]
- Jones, R.M.; Bedard, A.J. Atmospheric gravity wave ray tracing: Ordinary and extraordinary waves. J. Atmos. Sol. Terr. Phys. 2018, 179, 342–357. [Google Scholar] [CrossRef]
- Chane Ming, F.; Vignelles, D.; Jegou, F.; Berthet, G.; Renard, J.B.; Gheusi, F.; Kuleshov, Y. Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign. Atmos. Chem. Phys. 2016, 16, 8023–8042. [Google Scholar] [CrossRef] [Green Version]
- Pramitha, M.; Kumar, K.K.; Ratnam, M.V.; Praveen, M.; Rao, S.V.B. Gravity wave source spectra appropriation for mesosphere lower thermosphere using meteor radar observations and GROGRAT model simulations. Geophys. Res. Lett. 2020, 47, e2020GL089390. [Google Scholar] [CrossRef]
- Perrett, J.A.; Wright, C.J.; Hindley, N.P.; Hoffmann, L.; Mitchell, N.J.; Preusse, P.; Strube, C.; Eckermann, S.D. Determining gravity wave sources and propagation in the Southern Hemisphere by ray-tracing AIRS measurements. Geophys. Res. Lett. 2021, 48, e2020GL088621. [Google Scholar] [CrossRef]
- Strube, C.; Preusse, P.; Ern, M.; Riese, M. Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet. Atmos. Chem. Phys. 2021, 21, 18641–18668. [Google Scholar] [CrossRef]
- Preusse, P.; Eckermann, S.D.; Ern, M.; Oberheide, J.; Picard, R.H.; Roble, R.G.; Riese, M.; Russell, J.M.; Mlynczak, M.G. Global ray tracing simulations of the SABER gravity wave climatology. J. Geophys. Res. Atmos. 2009, 114, D08126. [Google Scholar] [CrossRef]
- Amemiya, A.; Sato, K. A New Gravity wave parameterization including three-dimensional propagation. J. Meteor. Soc. Japan. Ser. II 2016, 94, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Song, I.-S.; Lee, C.; Chun, H.-Y.; Kim, J.-H.; Jee, G.; Song, B.-G.; Bacmeister, J.T. Propagation of gravity waves and its effects on pseudomomentum flux in a sudden stratospheric warming event. Atmos. Chem. Phys. 2020, 20, 7617–7644. [Google Scholar] [CrossRef]
- Tidiga, M.; Berthet, G.; Jégou, F.; Kloss, C.; Bègue, N.; Vernier, J.-P.; Renard, J.-B.; Bossolasco, A.; Clarisse, L.; Taha, G.; et al. Variability of the aerosol content in the tropical lower stratosphere from 2013 to 2019: Evidence of volcanic eruption impacts. Atmosphere 2022, 13, 250. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gupta, A.; Birner, T.; Dörnbrack, A.; Polichtchouk, I. Importance of gravity wave forcing for springtime southern polar vortex breakdown as revealed by ERA5. Geophys. Res. Lett. 2021, 48, e2021GL092762. [Google Scholar] [CrossRef]
- Pahlavan, H.A.; Fu, Q.; Wallace, J.M.; Kiladis, G.N. Revisiting the Quasi-Biennial Oscillation as seen in ERA5. Part I: Description and momentum budget. J. Atmos. Sci. 2021, 78, 673–691. [Google Scholar] [CrossRef]
- Pahlavan, H.A.; Wallace, J.M.; Fu, Q. Characteristics of convectively generated gravity waves resolved by ERA5 reanalysis. Earth Space Sci. Open Arch. 2022, 20, 1–25. [Google Scholar] [CrossRef]
- Jewtoukoff, V.; Hertzog, A.; Plougonven, R.; de al Cámara, A.; Lott, F. Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci. 2015, 72, 3449–3468. [Google Scholar] [CrossRef]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting model: Overview, system efforts, and future directions. Bull. Am. Meteor. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Tridon, F.; Planche, C.; Mroz, K.; Banson, S.; Battaglia, A.; Van Baelen, J.; Wobrock, W. On the realism of the rain microphysics representation of a squall line in the WRF model. Part I: Evaluation with multifrequency radar Doppler spectra observations. Mon. Weather Rev. 2019, 147, 2787–2810. [Google Scholar] [CrossRef] [Green Version]
- Plougonven, R.; Hertzog, A.; Guez, L. Gravity waves over antarctica and the southern ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Atmosphere 2013, 4, 485–505. [Google Scholar] [CrossRef]
- Hima Bindu, H.; Venkat Ratnam, M.; Viswanadhapalli, Y.; Hari Prasad, D. Medium frequency gravity wave characteristics obtained using Weather Research and Forecasting (WRF) model simulations. J. Atmos. Sol. Terr. Phys. 2019, 182, 119–129. [Google Scholar] [CrossRef]
- Chane Ming, F.; Jolivet, S.; Liou, Y.-A.; Jégou, F.; Mekies, D.; Hong, J.-S. Elliptical structures of gravity waves produced by typhoon Soudelor in 2015 near Taiwan. Atmosphere 2019, 10, 260. [Google Scholar] [CrossRef] [Green Version]
- Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Hernandez, G.; Noto, J.; Zawdie, K.A.; McDonald, S.E.; et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci. 2015, 2, 301–319. [Google Scholar] [CrossRef]
- Paulino, I.; Figueiredo, C.A.O.B.; Rodrigues, F.S.; Buriti, R.A.; Wrasse, C.M.; Paulino, A.R.; Barros, D.; Takahashi, H.; Batista, I.S.; Medeiros, A.F.; et al. Atmospheric gravity waves observed in the nightglow following the 21 August 2017 total solar eclipse. Geophys. Res. Lett. 2020, 47, e2020GL088924. [Google Scholar] [CrossRef]
- Takahashi, H.; Figueiredo, C.A.O.B.; Essien, P.; Wrasse, C.M.; Barros, D.; Nyassor, P.K.; Paulino, I.; Egito, F.; Rosa, G.M.; Sampaio, A.H.R. Signature of gravity wave propagations from the troposphere to ionosphere. Ann. Geophys. 2022, 40, 665–672. [Google Scholar] [CrossRef]
- Mzé, N.; Hauchecorne, A.; Keckhut, P.; Thétis, M. Vertical distribution of gravity wave potential energy from long-term Rayleigh lidar data at a northern middle-latitude site. J. Geophys. Res. Atmos. 2014, 119, 12069–12083. [Google Scholar] [CrossRef]
- Chane Ming, F.; Molinaro, F.; Leveau, J.; Keckhut, P.; Hauchecorne, A. Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21°S, 55°E) with lidar using wavelet techniques. Ann. Geophys. 2000, 18, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Chane Ming, F.; Molinaro, F.; Leveau, J.; Keckhut, P.; Hauchecorne, A.; Godin, S. Vertical short-scale structures in the upper tropospheric and lower stratospheric temperature and ozone at la Réunion Island (20.8°S 55.3°E). J. Geophys. Res. Atmos. 2000, 105, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Bageston, J.V.; Wrasse, C.M.; Figueiredo, C.; Giongo, G.A.; Takahashi, H.; Gobbi, D.; Leme, N.M.P. Mesospheric gravity waves observed over Ferraz station and future plan. In Proceedings of the 3rd International ANtarctic Gravity Wave Instrument Network (ANGWIN) Science Workshop, Cambridge, UK, 12 April 2016. [Google Scholar]
- Klekociuk, A.R.; Tully, M.B.; Krummel, P.B.; Evtushevsky, O.; Kravchenko, V.; Henderson, S.I.; Alexander, S.P.; Querel, R.R.; Nichol, S.E.; Smale, D.A.; et al. The Antarctic ozone hole during 2017. J. South. Hemisph. Earth Syst. Sci. 2019, 69, 29–51. [Google Scholar] [CrossRef]
- Evtushevsky, O.; Klekociuk, A.R.; Kravchenko, V.; Milinevsky, G.P.; Grytsai, A. The influence of large amplitude planetary waves on the Antarctic ozone hole of austral spring 2017. J. South. Hemisph. Earth Syst. Sci. 2019, 69, 57–64. [Google Scholar] [CrossRef]
- Serafimovich, A.; Hoffmann, P.; Peters, D.; Lehmann, V. Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars. Atmos. Chem. Phys. 2005, 5, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Zülicke, C.; Peters, D. Simulation of Inertia–Gravity Waves in a Poleward-Breaking Rossby Wave. J. Atmos. Sci. 2006, 63, 3253–3276. [Google Scholar] [CrossRef]
- Peters, D.; Waugh, D.W. Rossby wave breaking in the southern hemisphere wintertime upper troposphere. Mon. Weather Rev. 2003, 131, 2623–2634. [Google Scholar] [CrossRef]
- Plougonven, R.; Zhang, F. Internal gravity waves from atmospheric jets and fronts. Atmosphere 2014, 5, 1657–1689. [Google Scholar] [CrossRef] [Green Version]
- Homeyer, C.R.; Bowman, K.P. Rossby wave breaking and transport between the tropics and extratropics above the subtropical jet. J. Atmos. Sci. 2013, 70, 607–626. [Google Scholar] [CrossRef] [Green Version]
- Ndarana, T.; Waugh, D.W. A Climatology of Rossby Wave Breaking on the Southern Hemisphere Tropopause. J. Atmos. Sci. 2011, 68, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.A.; Fritts, D.C.; Vanzandt, T.E. Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci. 1987, 44, 1404–1410. [Google Scholar] [CrossRef]
- Chane Ming, F.; Chen, Z.; Roux, F. Analysis of gravity-waves produced by intense tropical cyclones. Ann. Geophys. 2010, 28, 531–547. [Google Scholar] [CrossRef] [Green Version]
- Vincent, R.A.; Allen, S.J.; Eckermann, S.D. Gravity-wave parameters in the lower stratosphere. In Gravity Wave Processes; Hamilton, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 7–25. [Google Scholar] [CrossRef]
- Bellisario, C. Modélisation du Rayonnement Proche Infrarouge Émis par la Haute Atmosphère: Étude Théorique et Observationnelle. Chapter 4. Ph.D. Thesis, Université Paris-Saclay, Gif-sur-Yvette, France, 2015. [Google Scholar]
- Le Du, T.; Keckhut, P.; Hauchecorne, A.; Simoneau, P. Observation of gravity wave vertical propagation through a mesospheric inversion layer. Atmosphere 2022, 13, 1003. [Google Scholar] [CrossRef]
- Tang, J.; Kamalabadi, F.; Franke, S.; Liu, A.; Swenson, G. Estimation of gravity wave momentum flux with spectroscopic imaging. IEEE Trans. Geosci. Remote Sens. 2005, 43, 103–109. [Google Scholar] [CrossRef]
- Vargas, F.; Fuentes, J.; Vega, P.; Navarro, L.; Swenson, G. Probing the analytical cancellation factor of short scale gravity waves using Na lidar and nightglow data from the Andes lidar observatory. Atmosphere 2020, 11, 1311. [Google Scholar] [CrossRef]
Option | Setting |
---|---|
Model code | version 3.9 |
Map projection | Lambert |
Domain size and resolution | Domain D1—27 km, 160 × 119 grids Domain D2—9 km, 313 × 204 grids Domain D3—3 km, 793 × 468 grids |
Vertical coordinates and vertical resolution | 140 eta-pressure levels up to 10 hPa (32 km), resolution increasing from 20 m to 250 m up to 29-km height and 250 m above |
Radiation | Long-wave Rapid Radiative Transfer Model (RRTM) Mlawer and short-wave Dudhia schemes |
Microphysics | Single-Moment 6-class (WSM6) scheme |
Cumulus | Kain-Fritsch scheme |
Planetary Boundary Layer | Yonsei-University scheme |
Surface layer | Noah Land-Surface Model scheme |
Top layer condition | 5-km Rayleigh damping |
Lateral boundaries | 6-hourly NCEP FNL analyses (31 isobaric levels up to 10 hPa, 1° × 1°grids) |
Bottom layer condition | Fixed sea surface temperature |
Serial | Time (UTC) | λh (km) | Vφobs (m/s) | θobs (°) | τobs (min) | δI/I | Vφi (m/s) | θi (°) | τi (min) | λv (km) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1613–1630 | 8 | 24 | 70 | 5.5 | 0.089 | 10.7 | 45 | 12 | 24 |
2 | 1630–1705 | 10 | 33 | 82 | 5 | 0.085 | 18 | 77 | 9 | m2 < 0 |
3 | 1632–1735 | 10 | 47 | 115 | 3.5 | 0.088 | 40 | 118 | 4 | m2 < 0 |
4 | 1747–1830 | 8 | 38 | 120 | 3.5 | 0.069 | 39 | 117 | 3.3 | m2 < 0 |
5 | 1845–2040 | 16 | 37 | 57 | 7 | 0.053 | 46 | 61 | 5.7 | 17 |
Serial | Time (UTC) | λh (km) | Vφobs (m/s) | θobs (°) | τobs (min) | δI/I | Vφi (m/s) | θi (°) | τi (min) | λv (km) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1619–1643 | 15 | 130 | 0.04 | 14 | 263 | 17 | 0.3 | ||
2 | 1645–1734 | 17 | 4 | 120 | 70 | 0.09 | 3.3 | 69 | 84 | 1.2 |
3 | 1744–1820 | 8 | 19 | -130 | 7 | 0.06 | 16 | 227 | 8 | 9 |
4 | 1857–1930 | 10 | 16 | -108 | 10 | 0.08 | 6 | 221 | 27 | 5.8 |
5 | 2007–2036 | 11 | 30 | 135 | 6 | 0.07 | 45 | 118 | 4 | 19 |
6 | 2100–2206 | 13 | 7 | 125 | 30 | 0.12 | 30 | 101 | 7 | 2.2 |
7 | 2150–2350 | 14 | 6 | -52 | 38 | 0.15 | 23 | 93 | 9 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chane Ming, F.; Hauchecorne, A.; Bellisario, C.; Simoneau, P.; Keckhut, P.; Trémoulu, S.; Listowski, C.; Berthet, G.; Jégou, F.; Khaykin, S.; et al. Case Study of a Mesospheric Temperature Inversion over Maïdo Observatory through a Multi-Instrumental Observation. Remote Sens. 2023, 15, 2045. https://doi.org/10.3390/rs15082045
Chane Ming F, Hauchecorne A, Bellisario C, Simoneau P, Keckhut P, Trémoulu S, Listowski C, Berthet G, Jégou F, Khaykin S, et al. Case Study of a Mesospheric Temperature Inversion over Maïdo Observatory through a Multi-Instrumental Observation. Remote Sensing. 2023; 15(8):2045. https://doi.org/10.3390/rs15082045
Chicago/Turabian StyleChane Ming, Fabrice, Alain Hauchecorne, Christophe Bellisario, Pierre Simoneau, Philippe Keckhut, Samuel Trémoulu, Constantino Listowski, Gwenaël Berthet, Fabrice Jégou, Sergey Khaykin, and et al. 2023. "Case Study of a Mesospheric Temperature Inversion over Maïdo Observatory through a Multi-Instrumental Observation" Remote Sensing 15, no. 8: 2045. https://doi.org/10.3390/rs15082045
APA StyleChane Ming, F., Hauchecorne, A., Bellisario, C., Simoneau, P., Keckhut, P., Trémoulu, S., Listowski, C., Berthet, G., Jégou, F., Khaykin, S., Tidiga, M., & Le Pichon, A. (2023). Case Study of a Mesospheric Temperature Inversion over Maïdo Observatory through a Multi-Instrumental Observation. Remote Sensing, 15(8), 2045. https://doi.org/10.3390/rs15082045