Skillful Seasonal Prediction of Typhoon Track Density Using Deep Learning
Abstract
:1. Introduction
2. Data and Methods
2.1. Architecture of the SeaUnet Model
2.2. Pre-Training, Fine-Tuning, and Verification
2.3. Heat Map Analysis
2.4. Data
3. Results
3.1. Climate-Mean Comparison
3.2. Year-by-Year Comparison
3.3. Physical Interpretation of SeaUnet Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.; Kim, H.S.; Park, D.S.R.; Park, M.S. Variation of the tropical cyclone season start in the western north pacific. J. Clim. 2017, 30, 3297–3302. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Ying, M. Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review. Trop. Cyclone Res. Rev. 2012, 1, 307–324. [Google Scholar]
- Li, R.C.Y.; Zhou, W. Modulation of western north pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Clim. 2013, 26, 2904–2918. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W. Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Clim. 2013, 26, 2919–2930. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Zhou, W. Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteorol. Soc. Jpn. 2011, 89, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Wang, X.; Tao, L. Interannual and interdecadal impact of western north pacific subtropical high on tropical cyclone activity. Clim. Dyn. 2020, 54, 2237–2248. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, C. On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Clim. Dyn. 2018, 52, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Patricola, C.M.; Camargo, S.J.; Klotzbach, P.J.; Saravanan, R.; Chang, P. The Influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Clim. 2018, 31, 5395–5416. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Zhao, J. Contributions of SST anomalies in the Indo-Pacific ocean to the interannual variability of tropical cyclone genesis frequency over the western North Pacific. J. Clim. 2019, 32, 3357–3372. [Google Scholar] [CrossRef]
- Yu, J.; Li, T.; Tan, Z.; Zhu, Z. Effects of tropical north Atlantic SST on tropical cyclone genesis in the western North Pacific. Clim. Dyn. 2016, 46, 865–877. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, C.; Yang, S.; Chen, D.; He, S. Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO. Clim. Dyn. 2018, 51, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhan, R.; Wang, Y.; Xu, H. Contribution of the Interdecadal Pacific Oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Clim. 2018, 31, 8211–8224. [Google Scholar] [CrossRef]
- Klotzbach, P.; Blake, E.; Camp, J.; Caron, L.-P.; Chan, J.C.L.; Kang, N.-Y.; Zhan, R. Seasonal tropical cyclone forecasting. Trop. Cyclone Res. Rev. 2019, 8, 134–148. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B. Tropical cyclone predictability shaped by western Pacific subtropical high: Integration of trans-basin sea surface temperature effects. Clim. Dyn. 2019, 53, 2697–2714. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Villarini, G.; Murakami, H.; Gudgel, R.; Yang, X. Statistical–dynamical seasonal forecast of western North Pacific and east Asia landfalling tropical cyclones using the GFDL FLOR coupled climate model. J. Clim. 2017, 30, 2209–2232. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, B.; Wu, L. A region-dependent seasonal forecasting framework for tropical cyclone genesis frequency in the western North Pacific. J. Clim. 2019, 32, 8415–8435. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Villarini, G.; Delworth, T.L.; Gudgel, R.; Underwood, S.; Yang, X.; Zhang, W.; Lin, S. Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Clim. 2016, 29, 7977–7989. [Google Scholar] [CrossRef]
- Li, J.; Bao, Q.; Liu, Y.; Wu, G.; Wang, L.; He, B.; Wang, X.; Li, J. Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. J. Adv. Model. Earth Syst. 2019, 11, 1117–1136. [Google Scholar] [CrossRef]
- Manganello, J.V.; Hodges, K.I.; Cash, B.A.; Kinter, J.L.; Altshuler, E.L., III; Fennessy, M.J.; Vitart, F.; Molteni, F.; Towers, P. Seasonal forecasts of tropical cyclone activity in a high-atmospheric-resolution coupled prediction system. J. Clim. 2016, 29, 1179–1200. [Google Scholar] [CrossRef]
- Feng, X.; Klingaman, N.P.; Hodges, K.I.; Guo, Y.P. Western North Pacific tropical cyclones in the Met Office global seasonal forecast system: Performance and ENSO teleconnections. J. Clim. 2020, 33, 10489–10504. [Google Scholar] [CrossRef]
- Camp, J.; Bett, P.E.; Golding, N.; Hewitt, C.D.; Mitchell, T.D.; Scaife, A.A. Verification of the 2019 GloSea5 seasonal tropical cyclone landfall forecast for east China. J. Meteorol. Res. 2020, 34, 917–925. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G. Seasonal forecasting of western North Pacific tropical cyclone frequency using the North American multi-model ensemble. Clim. Dyn. 2019, 52, 5985–5997. [Google Scholar] [CrossRef]
- Zhang, G.; Murakami, H.; Gudgel, R.; Yang, X. Dynamical seasonal prediction of tropical cyclone activity: Robust assessment of prediction skill and predictability. Geophys. Res. Lett. 2019, 46, 5506–5515. [Google Scholar] [CrossRef]
- Chan, K.T.; Dong, Z.; Zheng, M. Statistical seasonal forecasting of tropical cyclones over the western North Pacific. Environ. Res. Lett. 2021, 16, 074027. [Google Scholar] [CrossRef]
- Palmer, T.N. Predictability of Weather and Climate: From Theory to Practice; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Yu, S.; Ma, J. Deep learning for geophysics: Current and future trends. Rev. Geophys. 2021, 59, e2021RG000742. [Google Scholar] [CrossRef]
- Wimmers, A.; Velden, C.; Cossuth, J.H. 2019: Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Mon. Weather Rev. 2019, 147, 2261–2282. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, M.; Kim, S.D.; Kug, J.S.; Ryu, J.G.; Kim, J. Spatiotemporal neural network with attention mechanism for El Niño forecasts. Sci. Rep. 2022, 12, 7204. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Duan, A. Using deep learning to predict the East Asian summer monsoon. Environ. Res. Lett. 2021, 16, 124006. [Google Scholar] [CrossRef]
- Andersson, T.R.; Hosking, J.S.; Pérez-Ortiz, M.; Paige, B.; Elliott, A.; Russell, C.; Law, S.; Jones, D.C.; Wilkinson, J.; Phillips, T.; et al. Seasonal Arctic Sea ice forecasting with probabilistic deep learning. Nature. Commun. 2021, 12, 5124. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C. Interdecadal variability of western North Pacific tropical cyclone tracks. J. Clim. 2008, 21, 4464–4476. [Google Scholar] [CrossRef]
- Rudzin, J.E.; Chen, S.; Sanabia, E.R.; Jayne, S.R. The air-sea response during Hurricane Irma’s (2017) rapid intensification over the Amazon-Orinoco River plume as measured by atmospheric and oceanic observations. J. Geophys. Res. Atmos. 2020, 125, e2019JD032368. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C. Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Clim. 2013, 26, 2614–2630. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, L.; Zhang, X.; Yang, Y.; Li, J. Necessary conditions for convergence of CNNs and initialization of convolution kernels. Digit. Signal Process. 2022, 123, 103397. [Google Scholar] [CrossRef]
- Pang, S.; Xie, P.; Xu, D.; Meng, F.; Tao, X.; Li, B.; Li, Y.; Song, T. NDFTC: A New Detection Framework of Tropical Cyclones from Meteorological Satellite Images with Deep Transfer Learning. Remote Sens. 2021, 13, 1860. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Zhan, R.; Wang, Y.; Lei, X. Contributions of ENSO and east Indian ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Clim. 2011, 24, 509–521. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G. Impact of the spring SST gradient between the tropical Indian ocean and western Pacific on landfalling tropical cyclone frequency in China. Adv. Atmos. Sci. 2018, 35, 682–688. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, R. Possible impacts of spring subtropical Indian Ocean Dipole on the summer tropical cyclone genesis frequency over the western North Pacific. Int. J. Climatol. 2022, 42, 5393–5402. [Google Scholar] [CrossRef]
- Wang, B.; Chan, J.C. How strong ENSO events affect tropical storm activity over the western North Pacific. J. Clim. 2002, 15, 1643–1658. [Google Scholar] [CrossRef]
- Du, Y.; Yang, L.; Xie, S.P. Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Clim. 2011, 24, 315–322. [Google Scholar] [CrossRef]
- Xie, S.P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Xie, S.P.; Kosaka, Y.; Du, Y.; Hu, K.; Chowdary, J.S.; Huang, G. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 2016, 33, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Fan, K. North Pacific sea ice cover, a predictor for the western North Pacific typhoon frequency? Sci. China Ser. D Earth Sci. 2007, 50, 1251–1257. [Google Scholar] [CrossRef]
- Zhou, B.T.; Cui, X. Modeling the influence of spring Hadley circulation on the summer tropical cyclone frequency in the western North Pacific. Chin. J. Geophys. 2009, 52, 1231–1236. [Google Scholar] [CrossRef]
- Armitage, T.W.; Bacon, S.; Kwok, R. Arctic sea level and surface circulation response to the Arctic Oscillation. Geophys. Res. Lett. 2018, 45, 6576–6584. [Google Scholar] [CrossRef]
- Cao, X.; Chen, S.; Chen, G.; Chen, W.; Wu, R. On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western North Pacific: A comparison between 1968-1986 and 1989-2007. Adv. Atmos. Sci. 2015, 32, 1319–1328. [Google Scholar] [CrossRef]
- Choi, K.S.; Wu, C.C.; Byun, H.R. Possible connection between summer tropical cyclone frequency and spring Arctic Oscillation over East Asia. Clim. Dyn. 2012, 38, 2613–2629. [Google Scholar] [CrossRef]
- Zuo, J.; Li, W.; Sun, C.; Ren, H.C. Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Clim. Dyn. 2018, 52, 2837–2853. [Google Scholar] [CrossRef]
- Cao, X.; Chen, S.; Chen, G.; Wu, R. Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Adv. Atmos. Sci. 2016, 33, 919–930. [Google Scholar] [CrossRef]
- Zhao, J.; Zhan, R.; Wang, Y.; Tao, L. Intensified interannual relationship between tropical cyclone genesis frequency over the northwest Pacific and the SST gradient between the southwest Pacific and the western Pacific warm pool since the mid-1970s. J. Clim. 2016, 29, 3811–3830. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Wen, M. The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Clim. 2013, 26, 2408–2415. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhou, G. Relationship between sea surface temperature of middle–high latitude Indian ocean and summer typhoon frequencies over the western North Pacific. Clim. Environ. Res. 2013, 18, 243–250. [Google Scholar]
- Camargo, S.J.; Zebiak, S.E. Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Weather Forecast. 2002, 17, 1152–1162. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Li, T.; Yi, L.; Hu, Y.; Wan, H.; Chen, H.; Liao, Q.; Ma, C.; Li, Q. Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep. 2017, 7, 8154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Jin, C.S.; Ho, C.H.; Kim, J.; Kim, J.H. Climatological features of WRF-simulated tropical cyclones over the western North Pacific. Clim. Dyn. 2015, 44, 3223–3235. [Google Scholar] [CrossRef]
- Song, K.; Yang, G.; Wang, Q.; Xu, C.; Liu, J.; Liu, W.; Shi, C.; Wang, Y.; Zhang, G.; Yu, X.; et al. Deep learning prediction of incoming rainfalls: An operational service for the city of Beijing China. In Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019; pp. 180–185. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Lv, S.; Sun, Y.; Feng, X.; Zhai, P.; Lin, Y.; Shen, Y.; Zhong, W. Skillful Seasonal Prediction of Typhoon Track Density Using Deep Learning. Remote Sens. 2023, 15, 1797. https://doi.org/10.3390/rs15071797
Feng Z, Lv S, Sun Y, Feng X, Zhai P, Lin Y, Shen Y, Zhong W. Skillful Seasonal Prediction of Typhoon Track Density Using Deep Learning. Remote Sensing. 2023; 15(7):1797. https://doi.org/10.3390/rs15071797
Chicago/Turabian StyleFeng, Zhihao, Shuo Lv, Yuan Sun, Xiangbo Feng, Panmao Zhai, Yanluan Lin, Yixuan Shen, and Wei Zhong. 2023. "Skillful Seasonal Prediction of Typhoon Track Density Using Deep Learning" Remote Sensing 15, no. 7: 1797. https://doi.org/10.3390/rs15071797
APA StyleFeng, Z., Lv, S., Sun, Y., Feng, X., Zhai, P., Lin, Y., Shen, Y., & Zhong, W. (2023). Skillful Seasonal Prediction of Typhoon Track Density Using Deep Learning. Remote Sensing, 15(7), 1797. https://doi.org/10.3390/rs15071797