Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. MapEO Water Workflow
2.1.1. Georeferencing
2.1.2. Radiometric Correction
- the spectral radiance measured by the camera and expressed in W/m2/sr/nm;
- vignette model to correct for the fall-off in light sensitivity that occurs in pixels further from the centre of the image;
- are radiometric calibration coefficients;
- the sensor gain setting;
- the normalised raw pixel value, i.e., the raw digital number of the pixel divided by the number of bits in the image (4096 for a 12-bit and 65536 for a 16-bit image);
- the normalised black level value;
- the image exposure time;
- the pixel column and row number.
- the pseudo radiance received by the sensor;
- an empirically defined vignetting model, by normalising all pixels of a homogenous surface and storing the defined ratios which lower towards the edges of the image;
- is the camera f-number, i.e., the ratio of the camera’s focal length to the aperture.
2.1.3. Conversion from Radiance to Water-Leaving Reflectance
- the wavelength;
- the Fresnel reflectance;
- the view zenith angle;
- the view azimuth angle;
- the downwelling sky radiance;
- the downwelling irradiance above the surface;
- the surface reflectance;
- referred to as sky glint.
- percentage diffuse irradiance;
- Fresnel coefficient for air-sensor interface;
- solar-sensor angle, i.e., the angle between the DLS vector and sun vector;
- sun elevation angle.
- Sun zenith angle;
- View zenith angles;
- Relative azimuth angle;
- Cloud type: Open Sky, Cumulus, Stratus, Altostratus;
- Spectral Response curves of the camera.
2.1.4. Conversion from Water-Leaving Reflectance to Water Quality Products
- and calibration coefficients ().
2.2. Validation in Inland and Coastal Waters
2.2.1. Study Sites
- -
- Lake Balaton in Hungary is the largest lake in Europe, with an area of 592 km2. Despite its large surface area, it is very shallow, with a mean depth of approximately 3.2 m. The trophic state of Lake Balaton varies between mesotrophic and eutrophic regimes. In addition, Kiss Balaton varied in trophic status and suspended matter concentration.
- -
- The Belgian North Sea covers an area of about 3454 km2. It is a sensitive ecosystem under considerable pressure from intensive human activity such as sand and gravel extraction, dumping of dredged material, wind farming, fishing, shipping and tourism. The coastal area is subject to anthropogenic eutrophication from land-based nutrients rinsing in rivers and flowing into the sea [27].
- -
- Razelm-Sinoe Lagoon is a coastal lagoon system attached to the southern part of the Danube Delta, located on the Romanian shoreline of the Black Sea. The lagoon system has been impacted by anthropogenic interventions (e.g., closing the connection with the sea), affecting its natural evolution [28]. The inflow of nutrient-rich Ranuve waters has increased eutrophication in the lagoon, especially in the last 20 years [29].
- -
- Rupelmondse Creek is a ground- and rainwater-fed waterbody connected to the Scheldt river through leaking non-return valves. The Scheldt water differs from the creek water in suspended sediments and Chl-a concentration. Knowledge about the extent of the inflow plume (including short- and long-term temporal variation) is necessary for ecologically sound water management in the polder.
- -
- Lake Marathon is a water supply reservoir located in Greece. It has a total surface area of about 2.4 km2 and maximum depth of 54 m. The reservoir is constructed from concrete and operates as a backup source for the water supply system of the greater Attica region and as a primary regulating reservoir. Seasonal algae fluctuations and prevention of pollution caused by trespassing and agricultural activities require careful monitoring of the lake [30].
2.2.2. Drone Data
- -
- ρw –665 > ρw – 865;
- -
- min(ρw) > −0.05.
2.2.3. Match Up Data
2.2.4. Validation Metrics
3. Results
3.1. Validation of Drone-Based Reflectance and Water Quality Products
3.2. Comparison of Satellite, Drone and In Situ Data
4. Discussion
4.1. Validation of Drone-Based Reflectance and Water Quality Products
4.2. Comparison of Satellite, Drone and In Situ Data
4.3. Overall Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koparan, C.; Koc, A.B.; Privette, C.V.; Sawyer, C.B. In Situ Water Quality Measurements Using an Unmanned Aerial Vehicle (UAV) System. Water 2018, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, P.; Marques, F.; Pinto, E.; Pombeiro, R.; Lourenço, A.; Mendonça, R.; Santana, P.; Barata, J. An open-source watertight unmanned aerial vehicle for water quality monitoring. In Proceedings of the Conference OCEANS 2015—MTS/IEEE, Washington, DC, USA, 19–22 October 2015; pp. 1–6. [Google Scholar]
- Ryu, J.H. UAS-based real-time water quality monitoring, sampling, and visualization platform (UASWQP). HardwareX 2022, 11, e00277. [Google Scholar] [CrossRef] [PubMed]
- El Serafy, G.; Schaeffer, B.; Neely, M.-B.; Spinosa, A.; Odermatt, D.; Weathers, K.; Baracchini, T.; Bouffard, D.; Carvalho, L.; Conmy, R.; et al. Integrating Inland and Coastal Water Quality Data for Actionable Knowledge. Remote. Sens. 2021, 13, 2899. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, M.; Mutanga, O.; Chimonyo, V.G.P.; Clulow, A.D.; Shoko, C.; Mazvimavi, D.; Dube, T.; Mabhaudhi, T. Application of Drone Technologies in Surface Water Resources Monitoring and Assessment: A Systematic Review of Progress, Challenges, and Opportunities in the Global South. Drones 2021, 5, 84. [Google Scholar] [CrossRef]
- Flynn, K.F.; Chapra, S. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle. Remote. Sens. 2014, 6, 12815–12836. [Google Scholar] [CrossRef] [Green Version]
- Su, T.-C.; Chou, H.-T. Application of Multispectral Sensors Carried on Unmanned Aerial Vehicle (UAV) to Trophic State Mapping of Small Reservoirs: A Case Study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef] [Green Version]
- Larson, M.D.; Milas, A.S.; Vincent, R.K.; Evans, J.E. Multi-depth suspended sediment estimation using high-resolution remote-sensing UAV in Maumee River, Ohio. Int. J. Remote. Sens. 2018, 39, 5472–5489. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Moelans, R.; Strackx, G.; Knaeps, E.; Lemey, E. Mapping water quality with drones: Test case in Texel. Terra Et Aqua 2019, 157, 6–16. [Google Scholar]
- Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Windle, A.E.; Silsbe, G.M. Evaluation of Unoccupied Aircraft System (UAS) Remote Sensing Retrievals for Water Quality Monitoring in Coastal Waters. Front. Environ. Sci. 2021, 9, 674247. [Google Scholar] [CrossRef]
- Mobley, C.D. Polarized reflectance and transmittance properties of windblown sea surfaces. Appl. Opt. 2015, 54, 4828–4849. [Google Scholar] [CrossRef]
- Schläpfer, D.; Popp, C.; Richter, R. Drone Data Atmospheric Correction Concept For Multi—And Hyperspectral Imagery—The Droacor Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 473–478. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Voss, K.; Boss, E.; Castagna, A.; Frouin, R.; Gilerson, A.; Hieronymi, M.; Johnson, B.C.; Kuusk, J.; Lee, Z.; et al. A Review of Protocols for Fiducial Reference Measurements of Water-Leaving Radiance for Validation of Satellite Remote-Sensing Data over Water. Remote. Sens. 2019, 11, 2198. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Wimmer, W.; Robinson, I.; Fisher, G.; Ferlet, M.; Nightingale, T.; Bras, B. A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers. J. Atmos. Ocean. Technol. 2014, 31, 1104–1127. [Google Scholar] [CrossRef]
- Mian, O.; Lutes, J.; Lipa, G.; Hutton, J.J.; Gavelle, E.; Borghini, S. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. ISPRS-Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.J.H.; Hoke, M.L.; et al. MODTRAN5: 2006 update. In Proceedings of the SPIE 6233, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, Orlando, FL, USA, 8 May 2006; Volume 6233, p. 62331F. [Google Scholar] [CrossRef]
- De, K.L.; Moelans, R.; De, M.D.; Strackx, G. RPAS—Remotely Piloted Aircraft Systems—Deployment and Operation Guide; Zenodo: Geneve, Switzerland, 2022. [Google Scholar] [CrossRef]
- MicaSense Inc. “Tutorial 3—DLS Sensor Basic Usage” Micasense/Imageprocessing GitHub. 2017–2019. Available online: https://micasense.github.io/imageprocessing/MicaSenseImageProcessingTutorial1.html (accessed on 20 September 2022).
- Gao, M.; Li, J.; Zhang, F.; Wang, S.; Xie, Y.; Yin, Z.; Zhang, B. Measurement of Water Leaving Reflectance Using a Digital Camera Based on Multiple Reflectance Reference Cards. Sensors 2020, 20, 6580. [Google Scholar] [CrossRef]
- Sterckx, S.; Knaeps, E.; Ruddick, K. Detection and correction of adjacency effects in hyperspectral airborne data of coastal and inland waters: The use of the near infrared similarity spectrum. Int. J. Remote. Sens. 2011, 32, 6479–6505. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote. Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Biesemans, J.; Sterckx, S.; Knaeps, E.; Vreys, K.; Adriaensen, S.; Hooyberghs, J.; Nieke, J.; Meuleman, K.; Kempeneers, P.; Deronde, B.; et al. Image processing workflows for airborne remote sensing. In Proceedings of the 5th EARSeL SIG Imaging Spectroscopy Workshop, Bruges, Belgium, 23–25 April 2007. [Google Scholar]
- Nechad, B.; Ruddick, K.G.; Neukermans, G. Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters. In Proceedings of the SPIE—The International Society for Optical Engineering, Berlin, Germany, 9 September 2009; p. 7473. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Earth Surf. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [Green Version]
- Lancelot, C.; Rousseau, V.; Gypens, N. Ecologically based indicators for Phaeocystis disturbance in eutrophied Belgian coastal waters (Southern North Sea) based on field observations and ecological modelling. J. Sea Res. 2009, 61, 44–49. [Google Scholar] [CrossRef]
- Bretcan, P.; Murărescu, M.O.; Samoilă, E.; Popescu, O. The modification of the ecological conditions in the Razim-Sinoie lacustrine complex as an effect of the anthropic intervention. In Proceedings of the XXIVth Conference of the Danubian Countries, Bled, Slovenia, 2–4 June 2008; ISBN 978-961-91090-2-1. [Google Scholar]
- Stanica, A.; Scrieciu, A.; Bujini, J.; Teaca, A.; Begun, T.; Ungureanu, C. “Razelm Sinoie Lagoon System—Stat of the Lagoon Report,” in Deliverable 2.2. ARCH (Architecture and Roadmap to Manage Multiple Pressures on Lagoons) FP7 Project, EC Grant 282748. 2013; Unpublished Report. [Google Scholar]
- Katsouras, G.; Chalaris, M.; Tsalas, N.; Dosis, A.; Samios, S.; Lytras, E.; Papadopoulos, K.; Synodinou, A. Integrated ecosystem ecology (Chlorophyll-a) of EYDAP’s Reservoirs profiles by using robotic boats. In Proceedings of the 5th International Conference ‘Water Resources and Wetlands’, Tulcea, Romania, 8–12 September 2021; Available online: http://www.limnology.ro/wrw2020/proceedings/23_Katsouras.pdf (accessed on 9 September 2021).
- Burggraaff, O.; Schmidt, N.; Zamorano, J.; Pauly, K.; Pascual, S.; Tapia, C.; Spyrakos, E.; Snik, F. Standardized spectral and radiometric calibration of consumer cameras. Opt. Express 2019, 27, 19075–19101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Hunter, P.; Riddick, C.; Werther, M.; Martinez Vicente, V.; Burggraaff, O.; Blake, M.; Spyrakos, E.; Tóth, V.; Kovács, A.; Tyler, A. In Situ Bio-Optical Data in Lake Balaton, MONOCLE H2020 Project (Version v1) [Data Set]; Zenodo: Geneve, Switzerland, 2021. [Google Scholar] [CrossRef]
- Simis, S.G.; Olsson, J. Unattended processing of shipborne hyperspectral reflectance measurements. Remote. Sens. Environ. 2013, 135, 202–212. [Google Scholar] [CrossRef] [Green Version]
- De Keukelaere, L.; Landuyt, L.; Knaeps, E. Terrascope Sentinel-2 Algorithm Theoretical Base Document (ATBD) S2–RHOW–V120. 2022. Available online: https://docs.terrascope.be/DataProducts/Sentinel-2/references/VITO_S2_ATBD_S2_RHOW_V120.pdf (accessed on 23 February 2023).
- De Keukelaere, L.; Landuyt, L.; Knaeps, E. Terrascope Sentinel-2 Algorithm Theoretical Base Document (ATBD) S2–Water Quality–V120. 2022. Available online: https://docs.terrascope.be/DataProducts/Sentinel-2/references/VITO_S2_ATBD_S2_WATER_QUALITY_V120.pdf (accessed on 23 February 2023).
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100; Zenodo: Geneve, Switzerland, 2021. [Google Scholar] [CrossRef]
- Katsouras, G.; Konstantinopoulos, S.; De Keukelaere, L.; Moelans, R.; Christodoulou, C.; Bauer, P.; Tsalas, N.; Hatzikonstantinou, P.; Lioumbas, I.; Katsiapi, M.; et al. Unmanned Vehicles combined with satellite observations as a complement tool for water quality of Lake Marathon. In Proceedings of the EuroGEO Workshop 2022, Athens, Greece, 7–9 December 2022; Available online: http://intcatch.eu/images/Katsouras_poster_EuroGEO2022_v1.pdf (accessed on 23 February 2023).
- Knaeps, E.; Doxaran, D.; Dogliotti, A.; Nechad, B.; Ruddick, K.; Raymaekers, D.; Sterckx, S. The SeaSWIR dataset. Earth Syst. Sci. Data 2018, 10, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.A.; Camacho, F.; García-Santos, V.; Origo, N.; Fuster, B.; Morris, H.; Pastor-Guzman, J.; Sánchez-Zapero, J.; Morrone, R.; Ryder, J.; et al. Fiducial Reference Measurements for Vegetation Bio-Geophysical Variables: An End-to-End Uncertainty Evaluation Framework. Remote. Sens. 2021, 13, 3194. [Google Scholar] [CrossRef]
- Butler, H.; Daly, M.; Doyle, A.; Gillies, S.; Hagen, S.; Schaub, T.; The GeoJSON Format. Internet Standards Track document. 2016. Available online: https://www.rfc-editor.org/rfc/rfc7946 (accessed on 23 February 2023).
Parameter | DJI PH4 | MSREM | MSDUAL |
---|---|---|---|
Raw data format | DNG | TIFF | TIFF |
Image dimensions (width × height) | 5472 n × 3648 | 1280 × 960 | 1280 × 960 |
Field of view (horizontal; vertical) | 73.7°; 53° | 47.2°; 35.4° | 47.2°; 35.4° |
Image Bit Depth | 16-bit | 12- or 16-bit | 12- or 16-bit |
Number of spectral bands | 3 | 5 | 10 |
Number of lenses | 1 | 5 | 10 |
Number of image files per capture | 1 | 5 | 10 |
Radiance calibration parameters in image metadata? | No | Yes | Yes |
Compatible with irradiance sensor? | No | Yes | Yes |
Site | Date | Lat | Lon | Sensor | Rw | Tur | Chl-a | S2 | Irradiance |
---|---|---|---|---|---|---|---|---|---|
Lake Balaton (HU) | 3–5 July 2019 | 46.83 | 17.75 | MSREM | x | x | Panel | ||
North Sea (BE) | 13 April 2021 | 51.43 | 3.00 | DJI PH4 | x | x | Panel | ||
Danube Delta (RO) | 12–14 October 2021 | 44.80 | 28.99 | MSDUAL | x | x | DLS | ||
Rupelmondse Creek (BE) | 16 March 2022 | 51.30 | 4.31 | MSDUAL | x | x | DLS | ||
Lake Marathon (GR) | 15 June 2022 | 38.17 | 23.90 | MSDUAL | x | x | DLS |
Sensor | Slope | Intercept | R2 | RMSE |
---|---|---|---|---|
Combined | 1.08 | −2.46 | 0.71 | 10.13 |
DJI PH4 | 0.99 | 1.5 | 0.58 | 14.35 |
MSREM | 1.14 | −4.53 | 0.85 | 5.61 |
Instrument | Loc A. | Loc B. |
---|---|---|
S2 MSI | 20 FNU | 1.5 FNU |
DJI PH4pro | Plume: 40–60 FNU Backgr.: 26–38 FNU | Around boat: 0.5–5 FNU Backgr: 1.4 FNU |
In Situ | 42–62 FNU | 2.1–2.9 FNU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Keukelaere, L.; Moelans, R.; Knaeps, E.; Sterckx, S.; Reusen, I.; De Munck, D.; Simis, S.G.H.; Constantinescu, A.M.; Scrieciu, A.; Katsouras, G.; et al. Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation. Remote Sens. 2023, 15, 1345. https://doi.org/10.3390/rs15051345
De Keukelaere L, Moelans R, Knaeps E, Sterckx S, Reusen I, De Munck D, Simis SGH, Constantinescu AM, Scrieciu A, Katsouras G, et al. Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation. Remote Sensing. 2023; 15(5):1345. https://doi.org/10.3390/rs15051345
Chicago/Turabian StyleDe Keukelaere, Liesbeth, Robrecht Moelans, Els Knaeps, Sindy Sterckx, Ils Reusen, Dominique De Munck, Stefan G.H. Simis, Adriana Maria Constantinescu, Albert Scrieciu, Georgios Katsouras, and et al. 2023. "Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation" Remote Sensing 15, no. 5: 1345. https://doi.org/10.3390/rs15051345
APA StyleDe Keukelaere, L., Moelans, R., Knaeps, E., Sterckx, S., Reusen, I., De Munck, D., Simis, S. G. H., Constantinescu, A. M., Scrieciu, A., Katsouras, G., Mertens, W., Hunter, P. D., Spyrakos, E., & Tyler, A. (2023). Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation. Remote Sensing, 15(5), 1345. https://doi.org/10.3390/rs15051345