The Ecological Evolution Analysis of Heritage Sites Based on The Remote Sensing Ecological Index—A Case Study of Kalajun–Kuerdening World Natural Heritage Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data and Source
2.3. Method
2.4. Data Processing
3. Results
3.1. Factor Attributes
3.2. Spatiotemporal Ecological Environment Changes
3.3. Spatial Ecological Change and Regional Ecological Change Statistics
3.4. Relation between the Land Cover Change and RSEI Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNESCO. Operational Guidelines for the Implementation of the World Heritage Convention; UNESCO: Paris, France, 2008. [Google Scholar]
- Satake, K.; Inoue, T.; Kasasaku, K.; Nagafuchi, O.; Nakano, T. Monitoring of nitrogen compounds on Yakushima Island, a world natural heritage site. Environ. Pollut. 1998, 102, 107–113. [Google Scholar] [CrossRef]
- Assunção, F.O.; Cravotto, A.; Testoni, H.; Testoni, J. World Heritage; Montevideo: Testoni Studios Ediciones; Ediciones UNESCO: Paris, France, 1996. [Google Scholar]
- Wang, S.-X.; Lu, W.-M.; Hung, S.-W. You gain when you give: Constructing a sustainable development model for world heritage sites. J. Clean Prod. 2021, 328, 129547. [Google Scholar] [CrossRef]
- Osipova, E.; Emslie-Smith, M.; Osti, M.; Murai, M.; Åberg, U.; Shadie, P. IUCN World Heritage Outlook 3; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Zhou, N.X.; Lin, Z.S.; Huang, Z.F.; Pan, G. Threats on the World Heritage Natural Sites and China’s Conservation Countermeasures. J. Nat. Resour. 2008, 23, 25–32. [Google Scholar]
- Chen, Y.; Liu, C.; Yang, R.; Wang, X. Global-scale risk assessment of sudden geological disasters in world natural heritage sites. J. Nat. Disasters 2020, 29, 87–96. [Google Scholar]
- Kolanuvada, S.R.; Ponpandian, K.L.; Sankar, S. Multi-criteria-based approach for optimal siting of artificial recharge structures through hydrological modeling. Arab. J. Geosci. 2019, 12, 190. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Wang, S.; Wang, J.; Deng, G. Analysis and simulation of the spatiotemporal evolution pattern of tourism lands at the Natural World Heritage Site Jiuzhaigou, China. Habitat Int. 2018, 79, 74–88. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, K.; Xiao, S. Global comparative analysis on the world natural heritage values of Libo cone karst in China. Geogr. Res. 2013, 32, 1517–1527. [Google Scholar]
- Won-Sok, J.; Do-Zun, R.; Ho-Yong, R. Natural Heritage Value of Mt. Kumgang and Global Comparative Analysis. Geoheritage 2020, 12, 32. [Google Scholar]
- Shi, H.; Shi, T.; Han, F.; Liu, Q.; Wang, Z.; Zhao, H. Conservation Value of World Natural Heritage Sites’ Outstanding Universal Value via Multiple Techniques—Bogda, Xinjiang Tianshan. Sustainability 2019, 11, 5953. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Ecotourism based on natural World Heritage sites: The role and place of communities. Tour. Trib. 2021, 36, 7–8. [Google Scholar]
- Han, X.; Hu, J.; Liu, C.; Wang, X. Mountain landscape health diagnosis and pattern evolution based on remote sensing: Case study in Xinjiang Tianshan Karajun-Kurdening. Acta Ecol. Sin. 2021, 41, 6451–6465. [Google Scholar]
- Ma, J. Biodiversity Protection Strategy Under the Background of Ecological Environment Threshold and the Tourism Carrying Capacity—According to the Core of the World Natural Heritage Wulingyuan Scenic Area as an Example. Econ. Geogr. 2016, 36, 195–202. [Google Scholar]
- Liu, Q.; Yang, Z.; Han, F.; Shi, H.; Wang, Z.; Chen, X. Ecological Environment Assessment in World Natural Heritage Site Based on Remote-Sensing Data. A Case Study from the Bayinbuluke. Sustainability 2019, 11, 6385. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, Z.; Shi, H.; Han, F.; Liu, Q.; Qi, J.; Lu, Y. Ecosystem Health Assessment of World Natural Heritage Sites Based on Remote Sensing and Field Sampling Verification: Bayanbulak as Case Study. Sustainability 2020, 12, 2610. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Wang, Z. Optimizing monitoring locations using a combination of GIS and fuzzy multi criteria decision analysis, a case study from the Tomur World Natural Heritage site. J. Nat. Conserv. 2018, 43, 67–74. [Google Scholar] [CrossRef]
- UNESCO; ICCROM; ICOMOS; IUCN. Managing Disaster Risks for World Heritage; UNESCO: Paris, France, 2010. [Google Scholar]
- Haasnoot, M.; van’t Klooster, S.; Van Alphen, J. Designing a monitoring system to detect signals to adapt to uncertain climate change. Glob. Environ. Chang.-Human Policy Dimens. 2018, 52, 273–285. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Wu, H.; Guo, B.; Fan, J.; Yang, F.; Han, B.; Wei, C.; Lu, Y.; Zang, W.; Zhen, X.; Meng, C. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Xu, X.; Han, F.; Zhang, Y.; Yang, W.; Yan, S.; Hai, Y.; Yin, L.; Zhao, X. World Natural Heritage of Xinjiang Tianshan; Science Press: Beijing, China, 2017. [Google Scholar]
- Costanza, R.; dArge, R.; deGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- An, M.; Xie, P.; He, W.; Wang, B.; Huang, J.; Khanal, R. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 2022, 141, 109090. [Google Scholar] [CrossRef]
- Han, L.; Wang, Z.; Wei, M.; Wang, M.; Shi, H.; Ruckstuhl, K.; Yang, W.; Alves, J. Small patches play a critical role in the connectivity of the Western Tianshan landscape, Xinjiang, China. Ecol. Indic. 2022, 144, 109542. [Google Scholar] [CrossRef]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Rasoolimanesh, S.M.; Jaafar, M.; Ahmad, A.G.; Barghi, R. Community participation in World Heritage Site conservation and tourism development. Tour. Manag. 2017, 58, 142–153. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, S.; Liu, M.; Peng, X.; Liao, X.; Wang, Z.; Gao, H. A systematic framework for continuous monitoring of land use and vegetation dynamics in multiple heterogeneous mine sites. Remote Sens. Ecol. Conserv. 2022, 8, 793–807. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, Y.; Gou, X.; Zhang, T.; Zou, C.; Ji, C.; Fan, Z.; Qin, L.; Shang, H.; Li, X. Intra-annual radial growth of Schrenk spruce (Picea schrenkiana Fisch. et Mey) and its response to climate on the northern slopes of the Tianshan Mountains. Dendrochronologia 2016, 40, 36–42. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–29. [Google Scholar]
- Wang, Z.; Chen, T.; Zhu, D.; Jia, K.; Plaza, A. RSEIFE: A new remote sensing ecological index for simulating the land surface eco-environment. J. Environ. Manag. 2023, 326, 116851. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, T.; Wang, Z.; Niu, R. Detecting ecological spatial-temporal changes by Remote Sensing Ecological Index with local adaptability. J. Environ. Manag. 2021, 299, 113655. [Google Scholar] [CrossRef]
- Xiong, Y. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environmental Science 2013, 33, 889–897. [Google Scholar]
- Xu, H.; Li, C.; Shi, T. Is the z-score standardized RSEI suitable for time-series ecological change detection? Comment on Zheng et al. (2022). Sci. Total Environ. 2022, 853, 158582. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C.; et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef] [PubMed]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H.-T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.Y.; Luo, L. Ecological Environment Assessment of Huangshan World Heritage Site Based on Remote-Sensing Ecological Index. Bull. Soil Water Conserv. 2020, 40, 142–146. [Google Scholar]
- Hu, Y.; Yang, R.; Shao, Y.; Chen, G. CRC and NHPWM method for test bench based on cascaded converter. IET Power Electron. 2019, 12, 11–21. [Google Scholar] [CrossRef]
- Tucker, C.J.; Fung, I.Y.; Keeling, C.D.; Gammon, R.H. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 1986, 319, 195–199. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Yang, X.; Meng, F.; Fu, P.; Wang, Y.; Liu, Y. Time-frequency optimization of RSEI: A case study of Yangtze River Basin. Ecol. Indic. 2022, 141, 109080. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Alavipanah, S.K. A novel method to quantify urban surface ecological poorness zone: A case study of several European cities. Sci. Total Environ. 2021, 757, 143755. [Google Scholar] [CrossRef]
- Wang, J.; Ding, Y.; Wang, S.; Watson, A.E.; He, H.; Ye, H.; Ouyang, X.; Li, Y. Pixel-scale historical-baseline-based ecological quality: Measuring impacts from climate change and human activities from 2000 to 2018 in China. J. Environ. Manag. 2022, 313, 114944. [Google Scholar] [CrossRef]
- Cao, J.; Wu, E.; Wu, S.; Fan, R.; Xu, L.; Ning, K.; Li, Y.; Lu, R.; Xu, X.; Zhang, J. Spatiotemporal Dynamics of Ecological Condition in Qinghai-Tibet Plateau Based on Remotely Sensed Ecological Index. Remote. Sens. 2022, 14, 4234. [Google Scholar] [CrossRef]
- Chen, A.; Yang, X.; Guo, J.; Xing, X.; Yang, D.; Xu, B. Synthesized remote sensing-based desertification index reveals ecological restoration and its driving forces in the northern sand-prevention belt of China. Ecol. Indic. 2021, 131, 108230. [Google Scholar] [CrossRef]
Data | Description | Data Sources |
---|---|---|
USGS Landsat 5 Level 2, Collection 2, Tier 1 | This dataset includes atmospherically corrected surface reflectance and land surface temperature extracted from data produced by the Landsat TM sensor. | Google Earth Engine |
USGS Landsat 8 Level 2, Collection 2, Tier 1 | This dataset includes atmospherically corrected surface reflectance and surface temperature obtained from data produced by the Landsat 8 OLI/TIRS sensor. | Google Earth Engine |
Annual China Land Cover Dataset (Wuhan University) | The Annual China Land Cover Dataset (CLCD) is based on Landsat images, combined with automatic stabilization samples and visual interpretation samples of existing products. | PIE Engine |
Index | Expression | Description |
---|---|---|
WET | The tassel cap transformation’s brightness, greenness and humidity components are closely related to the EE quality. Moreover, the moisture composition can represent the moisture status of soil and vegetation in the study site. Therefore, the moisture composition is used to represent the moisture index [43]. Where: are the reflectance data of the blue, green, red, NIR, shortwave infrared 1 and shortwave infrared 2 bands, correspondingly. | |
NDVI | Vegetation is a critical factor reflecting a region’s excellent or bad ecological quality. The normalized vegetation index (NDVI) is the most commonly adopted vegetation index [44], which can describe the relationship between plant biomass, leaf area index and vegetation cover well. Therefore, NDVI can be selected as the greenness index. are the reflectance data in the red and near infrared bands, respectively. | |
NDBSI | The Index-based Built-up Index (IBI) was chosen to convey the bare land as an essential ecological drawback throughout the study site, and the bare soil index (SI) was selected to describe the bare condition of the study site. The dryness index was synthesized from IBI and SI and was denoted as NDBSI [43,45]. | |
LST | The heat is characterized by surface temperature closely associated with vegetation and water resources. Here, the model of the Landsat user manual is selected to calculate the bright temperature, and then the surface temperature is obtained by surface-specific emissivity correction [46]. | |
RSEI |
| Xu [35,47] used four crucial indicators of the natural EE as the evaluation indexes of the proposed ecological index: the establishment of greenness, wetness, heat and dryness. For remote sensing images, NDVI, NDBSI, WET and LST were adopted to represent greenness, dryness, wetness and heat, respectively, to construct the remote sensing ecological indices. Before performing the principal component analysis, each indicator needs to be normalized to avoid the effect of dimensional differences. Moreover, the first principal component (PC1) and related statistics were obtained based on the principal component algorithm, using 1 minus PC1 to obtain RSEI0, and then normalizing RSEI0 to obtain the remote sensing ecological index. |
2006 | 2011 | 2016 | 2021 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | S.D. | Mean | Median | S.D. | Mean | Median | S.D. | Mean | Median | S.D. | |
Heat | 0.70 | 0.71 | 0.10 | 0.62 | 0.64 | 0.12 | 0.65 | 0.68 | 0.16 | 0.60 | 0.61 | 0.12 |
Dryness | 0.57 | 0.58 | 0.12 | 0.55 | 0.56 | 0.14 | 0.48 | 0.49 | 0.15 | 0.27 | 0.28 | 0.08 |
Greenness | 0.78 | 0.84 | 0.14 | 0.75 | 0.82 | 0.17 | 0.77 | 0.84 | 0.15 | 0.77 | 0.82 | 0.13 |
Wetness | 0.32 | 0.31 | 0.07 | 0.22 | 0.20 | 0.09 | 0.34 | 0.30 | 0.13 | 0.34 | 0.32 | 0.09 |
RSEI | 0.78 | 0.81 | 0.14 | 0.77 | 0.82 | 0.16 | 0.72 | 0.78 | 0.20 | 0.71 | 0.75 | 0.14 |
Level of Change | 2006–2011 | 2011–2016 | 2016–2021 | ||||
---|---|---|---|---|---|---|---|
Area (Km2) | Percentage (%) | Area (Km2) | Percentage (%) | Area (Km2) | Percentage (%) | ||
Improved | 4 | 0.0792 | 0.0028 | 0.0864 | 0.0031 | 0.0009 | 0.0000 |
3 | 0.9387 | 0.0337 | 1.017 | 0.0366 | 30.1509 | 1.0839 | |
2 | 5.6295 | 0.2024 | 7.0056 | 0.2518 | 105.1101 | 3.7785 | |
1 | 239.6061 | 8.6134 | 202.0032 | 7.2617 | 186.0129 | 6.6869 | |
Unchanged | 0 | 2276.9622 | 81.8530 | 1716.7194 | 61.7132 | 1732.8951 | 62.2947 |
Degraded | −1 | 242.0424 | 8.7010 | 738.0684 | 26.5323 | 722.8944 | 25.9869 |
−2 | 14.7078 | 0.5287 | 76.1337 | 2.7369 | 4.527 | 0.1627 | |
−3 | 1.8036 | 0.0648 | 40.5675 | 1.4583 | 0.1485 | 0.0053 | |
−4 | 0 | 0.0000 | 0.1683 | 0.0061 | 0.0297 | 0.0011 |
Time | District | Changes in RSEI Level | Improvement Percentage | Degradation Percentage | Net Percentage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | |||||
2006–2011 | Buffer | 0.0000 | 0.1051 | 0.7827 | 8.5172 | 82.4540 | 7.9781 | 0.1458 | 0.0171 | 0.0000 | 8.1410 | 9.4050 | −1.2640 |
Nominated | 0.0000 | 0.0331 | 0.3283 | 8.8380 | 81.3841 | 9.1177 | 0.2469 | 0.0467 | 0.0051 | 9.4164 | 9.1994 | 0.2170 | |
SUM | 0.0000 | 0.0648 | 0.5287 | 8.7010 | 81.8530 | 8.6134 | 0.2024 | 0.0337 | 0.0028 | 8.8524 | 9.2946 | −0.4422 | |
2011–2016 | Buffer | 0.0044 | 1.3886 | 2.2420 | 24.9731 | 64.2415 | 6.6989 | 0.3828 | 0.0632 | 0.0054 | 7.1503 | 28.6081 | −21.4578 |
Nominated | 0.0073 | 1.5122 | 3.1175 | 27.7542 | 59.7496 | 7.6947 | 0.1477 | 0.0154 | 0.0013 | 7.8591 | 32.3912 | −24.5321 | |
SUM | 0.0061 | 1.4583 | 2.7369 | 26.5323 | 61.7132 | 7.2617 | 0.2518 | 0.0366 | 0.0031 | 7.5532 | 30.7336 | −23.1804 | |
2016–2021 | Buffer | 0.0024 | 0.0121 | 0.1909 | 24.5618 | 63.3278 | 7.0412 | 3.8040 | 1.0597 | 0.0000 | 11.9049 | 24.7672 | −12.8623 |
Nominated | 0.0000 | 0.0001 | 0.1401 | 27.0803 | 61.5202 | 6.4098 | 3.7455 | 1.1039 | 0.0001 | 11.2593 | 27.2205 | −15.9612 | |
SUM | 0.0011 | 0.0053 | 0.1627 | 25.9869 | 62.2947 | 6.6869 | 3.7785 | 1.0839 | 0.0000 | 11.5493 | 26.1560 | −14.6067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Han, F.; Han, J.; Ren, Q.; Li, Y. The Ecological Evolution Analysis of Heritage Sites Based on The Remote Sensing Ecological Index—A Case Study of Kalajun–Kuerdening World Natural Heritage Site. Remote Sens. 2023, 15, 1179. https://doi.org/10.3390/rs15051179
He B, Han F, Han J, Ren Q, Li Y. The Ecological Evolution Analysis of Heritage Sites Based on The Remote Sensing Ecological Index—A Case Study of Kalajun–Kuerdening World Natural Heritage Site. Remote Sensing. 2023; 15(5):1179. https://doi.org/10.3390/rs15051179
Chicago/Turabian StyleHe, Baoshi, Fang Han, Jiali Han, Qingliu Ren, and Ying Li. 2023. "The Ecological Evolution Analysis of Heritage Sites Based on The Remote Sensing Ecological Index—A Case Study of Kalajun–Kuerdening World Natural Heritage Site" Remote Sensing 15, no. 5: 1179. https://doi.org/10.3390/rs15051179
APA StyleHe, B., Han, F., Han, J., Ren, Q., & Li, Y. (2023). The Ecological Evolution Analysis of Heritage Sites Based on The Remote Sensing Ecological Index—A Case Study of Kalajun–Kuerdening World Natural Heritage Site. Remote Sensing, 15(5), 1179. https://doi.org/10.3390/rs15051179