Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.3. Study Methods
2.3.1. Time-Series Trend of SPEI
2.3.2. Standardized Anomalies of SIF/SIFyield/VIs/LAI/fPAR
2.3.3. Correlation Analysis
2.3.4. Variable Importance Measurement Based on Random Forest
3. Results
3.1. Temporal Variation Characteristics of Drought Obtained from SPEI
3.2. Response of SIF/SIFyield/VIs/LAI/fPAR to Drought Stress
3.2.1. Temporal Analysis
3.2.2. Spatial Analysis
3.3. Correlation Analysis
3.4. Variable Importance Measurement Based on Random Forest
4. Discussion
4.1. Temporal Analysis
4.2. Spatial Analysis
4.3. Correlation and Validation Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Latif, M.; Sun, J.; Visbeck, M.; Hadi Bordbar, M. Natural variability has dominated Atlantic Meridional Overturning Circulation since 1900. Nat. Clim. Change 2022, 12, 455–460. [Google Scholar] [CrossRef]
- Grant, P.R. Evolution, climate change, and extreme events. Science 2017, 357, 451–452. [Google Scholar] [CrossRef]
- Su, J.; Wen, M.; Ding, Y.; Gao, Y.; Song, Y. Hiatus of global warming: A review. Chin. J. Atmos. Sci. 2016, 40, 1143–1153. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, Y.; Feng, J.; Zhao, Y. Preliminary Analysis on the Demand and Review of Progress in the Field of Meteorological Drought Research. J. Arid Meteorol. 2012, 30, 497–508. [Google Scholar]
- Wang, Z.; Duan, M. Research Progress of Economic Losses Assessment in Drought Disaster in China. J. Anhui Agric. Sci. 2015, 43, 115–117. [Google Scholar] [CrossRef]
- Hammond, W.M.; Williams, A.P.; Abatzoglou, J.T.; Adams, H.D.; Klein, T.; López, R.; Sáenz-Romero, C.; Hartmann, H.; Breshears, D.D.; Allen, C.D. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 2022, 13, 1761. [Google Scholar] [CrossRef] [PubMed]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef]
- Hansen, M.; Potapov, P.; Moore, R.; Hancher, M. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Stovall, A.E.L.; Shugart, H.; Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 2019, 10, 4385. [Google Scholar] [CrossRef] [Green Version]
- Qian, X. A Vegetation Drought Stress Index Based on Solar-induced Chlorophyll Fluorescence; Nanjing University: Nanjing, China, 2019; p. 88. [Google Scholar]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, G. Theoratical Study and Research Prospect on Drought Indices. Adv. Earth Sci. 2004, 19, 982–991. [Google Scholar]
- Zhang, Q.; Yao, Y.; Li, Y.; Huang, J.; Ma, Z.; Wang, Z.; Wang, S.; Wang, Y.; Zhang, Y. Progress and prospect on the study of causes and variation regularity of droughts in China. Acta Meteorol. Sin. 2020, 78, 500–521. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, J.; Feng, Y.; Xiao, W. Carbon Stocks and Carbon Sequestration Capacity of the Main Plantations in China. J. Northwest For. Univ. 2016, 31, 1–6. [Google Scholar] [CrossRef]
- Hou, X.; Zhao, J.; Zhao, H.; Ta, Z.; Yue, C. Drought effects on forest greenness anomalies in China from 2003 to 2018. China Environ. Sci. 2022, 42, 336–344. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y. Advances in Adaptability of Meteorological Drought Indices in China. J. Arid Meteorol. 2017, 35, 709–723. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Li, Y. Spatiotemporal Characterisation of Drought in Jilin Province Based on Meteorological Data and LST-NDVI Feature Space; Northeast Normal University: Jilin, China, 2015; p. 65. [Google Scholar]
- Wang, X. Construction and Application of Standardized Vegetation Moisture Index in Northeast China; Northwest Normal University: Gansu, China, 2021; p. 98. [Google Scholar]
- Ni, Z.; Huo, H.; Tang, S.; Li, Z.; Liu, Z.; Xu, S.; Chen, B. Assessing the response of satellite sun-induced chlorophyll fluorescence and MODIS vegetation products to soil moisture from 2010 to 2017: A case in Yunnan Province of China. Int. J. Remote Sens. 2019, 40, 2278–2295. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, Z.; Huo, H.; Li, Z.; Nerry, F.; Wang, Q.; Li, X. Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data. Remote Sens. 2015, 7, 3232–3249. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Qiu, B.; Song, L.; Zhang, Y. Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application. J. Remote Sens. 2019, 23, 37–52. [Google Scholar] [CrossRef]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of Solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A.; et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Middleton, E.M.; Campbell, P.K.E.; Kuze, A.; Corp, L.A. Filling-in of far-red and near-Infrared solar lines by terrestrial and atmospheric effects: Simulations and space-based observations from SCIAMACHY and GOSAT. Atmos. Meas. Tech. Discuss. 2012, 5, 163–210. [Google Scholar] [CrossRef]
- Kohler, P.; Guanter, L.; Frankenberg, C. Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1446–1450. [Google Scholar] [CrossRef]
- Wang, S.; Huang, C.; Zhang, L.; Lin, Y.; Cen, Y.; Wu, T. Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production. Remote Sens. 2016, 8, 61. [Google Scholar] [CrossRef]
- Chen, X.; Ji, L.; Yu, K.; Zhao, Y. Monitoring of Drought in Shandong Province by Sun-induced Chlorophyll Fluorescence. China Sci. 2021, 16, 564–570. [Google Scholar]
- Sun, Y.; Fu, R.; Dickinson, R.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res. Biogeosci. 2015, 120, 2427–2440. [Google Scholar] [CrossRef]
- Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J.E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y. The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances. Remote Sens. Environ. 2015, 166, 163–177. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Z.; Zhao, L.; Zhao, H.; Ren, S. Diurnal Response of Sun-Induced Fluorescence and PRI to Water Stress in Maize Using a Near-Surface Remote Sensing Platform. Remote Sens. 2018, 10, 1510. [Google Scholar] [CrossRef]
- Ma, P.; Han, L.; Zhang, X.; Liu, W. Regional Characteristics of Drought in China under the Background of Climate Warming. J. Desert Res. 2019, 39, 209–215. [Google Scholar]
- Wu, Z. Chinese Vegetation; Science Press: Beijing, China, 1980; p. 1. [Google Scholar]
- Zhou, H.; Sun, H.; Shi, Z.; Peng, F.; Lin, Y. Solar-induced chlorophyll fluorescence data-based study on the spatial and temporal patterns of vegetation phenology in the Northern Hemisphere during the period of 2007–2018. J/OL. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Pu, J.; Huang, Z.; Gao, M. Relationship between climatic characteristics and planting suitability of main cash crops in Yunnan. J. Meteorol. Res. 2021, 42, 53–57. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, J.; Ren, J. Climate Characteristics of Extreme Drought Events in Yunnan. J. Catastrophology 2013, 28, 59–64. [Google Scholar] [CrossRef]
- Zhang, R.; Zhuang, Y.; Xue, F.; Chen, S.; Lin, X.; Pan, H. Monitoring, Early-Warming and Assessment Techniques of Meteorological Drought Risk in Fujian Province. J. Catastrophology 2019, 34, 114–122. [Google Scholar] [CrossRef]
- Cai, X.; Wu, S.; He, H.; Jiang, C.; Sun, X.; Gao, H.; Zheng, G. Change of Extreme Climate Events in Shaanxi Province under Global Warming Background. J. Desert Res. 2012, 32, 1095–1101. [Google Scholar]
- Wang, Z.; Sun, C.; Liu, Y.; Jiang, Q.; Zhu, T. Spatiotemporal variation of vegetation index and its response to climate factors in Heilongjiang Province. South-North Water Transf. Water Sci. Technol. 2022, 20, 737–747. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. Interdiscip. J. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; Kenawy, A.E. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M. A Multiscalar Global Drought Dataset: The SPEIbase: A New Gridded Product for the Analysis of Drought Variability and Impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1356. [Google Scholar] [CrossRef]
- Yang, S.; Meng, D.; Li, X.; Wu, X. Multi-scale responses of vegetation changes relative to the SPEI meteorological drought index in North China in 2001–2014. Acta Ecol. Sin. 2018, 38, 1028–1039. [Google Scholar]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form (accessed on 28 December 2021).
- Papaioannou, G.; Papanikolaou, N.; Retalis, D. Relationships of photosynthetically active radiation and shortwave irradiance. Appl. Clim. 1993, 48, 23–27. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MCD43C4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF-Adjusted Ref Daily L3 Global 0.05Deg CMG V061 2021, Distributed by NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mcd43c4v061 (accessed on 28 December 2021).
- Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006 2015, distributed by NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mod15a2hv006 (accessed on 28 December 2021).
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef]
- Luo, X.; Li, Y.; Yin, H.; Sui, M. Response of NDVl to SPEl at different temporal scales in Northeast China. Chin. J. Ecol. 2020, 39, 412–421. [Google Scholar] [CrossRef]
- GB/T 20481-2017; Grades of Meteorological Drought. China Meteorological Administration: Beijing, China, 2017.
- Tang, J. Analysis of precipitation characteristics of the last 55 years in the Tianshan Mountains based on MK test. Gansu Water Resour. Hydropower 2019, 55, 5–8. [Google Scholar] [CrossRef]
- Cao, J.; Chi, D.; Wu, L.; Liu, L.; Li, S.; Yu, M. Mann-Kendall Examination and Application in the Analysis of Precipitation Trend. Agric. Sci. Technol. Equip. 2008, 5, 35–37. [Google Scholar] [CrossRef]
- Breiman, L. Random forests—Random features. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.W. Bias of the Random Forest Out-of-Bag (OOB) Error for Certain Input Parameters. Open J. Stat. 2011, 01, 205–211. [Google Scholar] [CrossRef]
- Nicodemus, K.K. Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures. Brief. Bioinform. 2011, 12, 369–373. [Google Scholar] [CrossRef]
- Song, S.; He, R. lmportance measure index system based on random forest. J. Natl. Univ. Def. Technol. 2021, 43, 25–32. [Google Scholar] [CrossRef]
- Jiao, W.; Chang, Q.; Wang, L. The Sensitivity of Satellite Solar-Induced Chlorophyll Fluorescence to Meteorological Drought. Earth’s Future 2019, 7, 558–573. [Google Scholar] [CrossRef]
- Peng, G.; Liu, Y. A Dynamic Risk Analysis of 2009—2010 Yunnan Extra-Severe Drought. Adv. Meteorol. Sci. Technol. 2012, 2, 50–52. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, F.; Zhao, X. The superiority of solar-induced chlorophyll fluorescence sensitivity over other vegetation indices to drought. J Arid Environ. 2022, 204, 104787. [Google Scholar] [CrossRef]
- Li, X. Development and Application of a LAl-Based Global Vegetation Drought Index; Tsinghua University: Beijing, China, 2017; p. 81. [Google Scholar]
- Lee, J.; Frankenberg, C.; van der Tol, C.; Berry, J.A.; Guanter, L.; Boyce, C.K.; Fisher, J.B.; Morrow, E.; Worden, J.R.; Asefi, S.; et al. Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130171. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Zhou, H.; Liu, S.; Zhou, L.; Li, X.; Yang, J.; Han, X.; Wu, J. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Sci. Total Environ. 2018, 625, 1208–1217. [Google Scholar] [CrossRef]
- Pandiyan, S.; Govindjee, G.; Meenatchi, S.; Prasanna, S.; Gunasekaran, G.; Guo, Y. Evaluating the Impact of Summer Drought on Vegetation Growth Using Space-Based Solar-Induced Chlorophyll Fluorescence Across Extensive Spatial Measures. Big Data 2022, 10, 230–245. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Zhou, H.; Li, X.; Wang, Q.; An, X.; Li, R. Chlorophyll Fluorescence and lts Progress in Detecting Water Stress. Spectrosc. Spect. Anal. 2017, 37, 2780–2787. [Google Scholar]
- Shekhar, A.; Chen, J.; Bhattacharjee, S.; Buras, A.; Castro, A.O.; Zang, C.S.; Rammig, A. Capturing the Impact of the 2018 European Drought and Heat across Different Vegetation Types Using OCO-2 Solar-Induced Fluorescence. Remote Sens. 2020, 12, 3249. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Huang, S.; Wen, L. Feasibility of Using MODIS Products to Simulate Sun-Induced Chlorophyll Fluorescence (SIF) in Boreal Forests. Remote Sens. 2020, 12, 680. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.P.; et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef]
- Turner, A.J.; Khler, P.; Magney, T.S.; Frankenberg, C.; Cohen, R.C. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences 2020, 17, 405–422. [Google Scholar] [CrossRef] [Green Version]
- Li, X. Research on Drought Monitoring and Terrestrial Ecosystem Response Based on Multi-Source Remote Sensing Data; University of Electronic Science and Technology of China: Chengdu, China, 2018; p. 132. [Google Scholar]
The Data Type | Products | Time | Native Spatial Resolution | Final Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
SPEI | SPEIbase V2.6 | 2006–2018 | 0.5° | 0.05° | 1 month |
SIF | GOSIF | 2006–2018 | 0.05° | 0.05° | 1 month |
VIs | MCD43C4 | 2006–2018 | 0.05° | 0.05° | 16 d |
LAI | MOD15A2H | 2006–2018 | 500 m | 0.05° | 8 d |
fPAR | MOD15A2H | 2006–2018 | 500 m | 0.05° | 8 d |
SSRD | ERA5-Land | 2006–2018 | 0.1° | 0.05° | 1 month |
Landcover data | MCD12C1 | 2012 | 0.05° | 0.05° | year |
Grade | The Degree of Drought | SPEI |
---|---|---|
1 | Non-drought | −0.5 < SPEI |
2 | Light drought | −1.0 < SPEI ≤ −0.5 |
3 | Medium drought | −1.5 < SPEI ≤ −1.0 |
4 | Severe drought | −2.0 < SPEI ≤ −1.5 |
5 | Extreme drought | SPEI ≤ −2.0 |
Provinces | Drought Period | Percentage of Detected Drought Areas That Coincident with SPEI Drought Regions (%) | |||||
---|---|---|---|---|---|---|---|
SIF | SIFyield | NDVI | EVI | LAI | fPAR | ||
Yunnan | early | 68.78 | 82.30 | 54.14 | 53.27 | 45.64 | 33.96 |
middle | 73.46 | 84.21 | 97.25 | 98.04 | 51.99 | 56.14 | |
late | 38.64 | 21.88 | 36.12 | 36.05 | 23.53 | 18.78 | |
Fujian | early | 0 | 51.33 | 1.74 | 6.22 | 11.60 | 10.84 |
middle | 5.61 | 71.49 | 10.08 | 25.17 | 40.71 | 29.57 | |
late | 16.91 | 27.52 | 4.77 | 14.40 | 25.43 | 24.11 | |
Shaanxi | early | 70.99 | 86.07 | 74.83 | 66.16 | 22.60 | 14.81 |
middle | 46.97 | 55.81 | 49.71 | 34.98 | 41.13 | 36.44 | |
late | 44.67 | 47.23 | 45.04 | 40.38 | 17.51 | 15.83 | |
Heilongjiang | early | 73.96 | 74.95 | 73.62 | 62.09 | 43.07 | 36.21 |
middle | 70.79 | 74.07 | 60.16 | 57.33 | 63.01 | 30.68 | |
late | 79.47 | 80.39 | 70.10 | 73.21 | 69.22 | 58.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Cui, T.; Cao, L. Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices. Remote Sens. 2023, 15, 879. https://doi.org/10.3390/rs15040879
Ma H, Cui T, Cao L. Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices. Remote Sensing. 2023; 15(4):879. https://doi.org/10.3390/rs15040879
Chicago/Turabian StyleMa, Huipeng, Tianxiang Cui, and Lin Cao. 2023. "Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices" Remote Sensing 15, no. 4: 879. https://doi.org/10.3390/rs15040879
APA StyleMa, H., Cui, T., & Cao, L. (2023). Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices. Remote Sensing, 15(4), 879. https://doi.org/10.3390/rs15040879