Automatic Modulation Recognition of Radiation Source Signals Based on Data Rearrangement and the 2D FFT
Abstract
:1. Introduction
2. Feature Extraction Method Based on Data Rearrangement and the 2D FFT
2.1. Data Rearrangement
2.2. Two-Dimensional FFT
2.3. Feature Feasibility Analysis
3. Feature Recognition Via the DenseNet Feature Extraction Network with Early Fusion
3.1. Signal Preprocessing
3.2. DenseNet Feature Extraction Network with Early Fusion
3.2.1. Dense Block
3.2.2. Transition Layer
3.2.3. Network Architecture
4. Simulation Analysis
4.1. The Simulation Environment
4.2. Computational Complexity of the Preprocessing Methods
4.3. Network Architectures for Feature Recognition
4.4. Recognition Accuracy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix B
Appendix B.1
Appendix B.2
References
- Azza, M.A.; Moussati, A.E.; Barrak, R. Implementation of Cognitive Radio applications on a Software Defined Radio plateform. In Proceedings of the 2014 International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 April 2014; pp. 1037–1041. [Google Scholar] [CrossRef]
- Zhang, F.X.; Luo, C.B.; Xu, J.L.; Luo, Y.; Zheng, F.C. Deep learning based automatic modulation recognition: Models, datasets, and challenges. Digit. Signal Process. 2022, 129, 103650. [Google Scholar] [CrossRef]
- Benedetto, F.; Tedeschi, A.; Giunta, G. Automatic Blind Modulation Recognition of Analog and Digital Signals in Cognitive Radios. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montréal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, M.T.; Li, Y.J.; Pan, Z.S.; Yang, J. Automatic modulation recognition of compound signals using a deep multi-label classifier: A case study with radar jamming signals. Signal Process. 2020, 169, 107393. [Google Scholar] [CrossRef]
- Lim, C.W.; Wakin, M.B. Automatic modulation recognition for spectrum sensing using nonuniform compressive samples. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 3505–3510. [Google Scholar] [CrossRef] [Green Version]
- Nasrallah, A.; Hamza, A.; Baudoin, G.; Toufik, B.; Zoubir, A.M. Simple improved mean energy detection in spectrum sensing for cognitive radio. In Proceedings of the 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kozal, A.S.B.; Merabti, M.; Bouhafs, F. An improved energy detection scheme for cognitive radio networks in low SNR region. In Proceedings of the 2012 IEEE Symposium on Computers and Communications (ISCC), Cappadocia, Turkey, 1–4 July 2012; pp. 000684–000689. [Google Scholar] [CrossRef]
- Xu, J.L.; Su, W.; Zhou, M. Likelihood-Ratio Approaches to Automatic Modulation Classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2011, 41, 455–469. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X. Fast and Robust Modulation Classification via Kolmogorov-Smirnov Test. IEEE Trans. Commun. 2010, 58, 2324–2332. [Google Scholar] [CrossRef]
- Hazza, A.; Shoaib, M.; Alshebeili, S.A.; Fahad, A. An overview of feature-based methods for digital modulation classification. In Proceedings of the 2013 1st International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, United Arab Emirates, 12–14 February 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, S.K.; Yan, X.P.; Li, P.; Hao, X.H.; Wang, K. Radar Emitter Recognition Based on SIFT Position and Scale Features. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 2062–2066. [Google Scholar] [CrossRef]
- Quan, D.Y.; Tang, Z.Y.; Wang, X.F.; Zhai, W.C.; Qu, C.X. LPI Radar Signal Recognition Based on Dual-Channel CNN and Feature Fusion. Symmetry 2022, 14, 570. [Google Scholar] [CrossRef]
- Rueda, A.; Krishnan, S. Augmenting Dysphonia Voice Using Fourier-based Synchrosqueezing Transform for a CNN Classifier. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6415–6419. [Google Scholar] [CrossRef]
- Kong, G.; Jung, M.; Koivunen, V. Waveform Classification in Radar-Communications Coexistence Scenarios. In Proceedings of the GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Huynh-The, T.; Pham, Q.V.; Nguyen, T.V.; Kim, D.S. Deep Learning for Coexistence Radar-Communication Waveform Recognition. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 1725–1727. [Google Scholar] [CrossRef]
- Su, L.; Wu, H.S.; Tzuang, C.K.C. 2-D FFT and time-frequency analysis techniques for multi-target recognition of FMCW radar signal. In Proceedings of the Asia-Pacific Microwave Conference 2011, Melbourne, VIC, Australia, 5–8 December 2011; pp. 1390–1393. [Google Scholar]
- Chin, H.Y.; Tsai, P.Y.; Lee, S.Y. Implementation of a Two-Dimensional FFT/IFFT Processor for Real-Time High-Resolution Synthetic Aperture Radar Imaging. In Proceedings of the 2021 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 19–21 October 2021; pp. 211–216. [Google Scholar] [CrossRef]
- Auger, F.; Flandrin, P.; Lin, Y.T.; McLaughlin, S.; Meignen, S.; Oberlin, T.; Wu, H.T. Time-Frequency Reassignment and Synchrosqueezing: An Overview. IEEE Signal Process. Mag. 2013, 30, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Oberlin, T.; Meignen, S.; Perrier, V. The fourier-based synchrosqueezing transform. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 315–319. [Google Scholar] [CrossRef] [Green Version]
- Kalra, M.; Kumar, S.; Das, B. Target Detection Using Smooth Pseudo Wigner-Ville Distribution. In Proceedings of the 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Thiruvananthapuram, India, 6–8 December 2018; pp. 6–10. [Google Scholar] [CrossRef]
- Ting, Z.; Lin, Y.; Jishen, L.; Chengxiang, Z. A High Quality Time-Frequency Analysis Method. In Proceedings of the 2022 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 22–25 April 2022; pp. 344–348. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Pleiss, G.; Maaten, L.v.d.; Weinberger, K.Q. Convolutional Networks with Dense Connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 8704–8716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duhamel, P.; Vetterli, M. Fast Fourier transforms: A tutorial review and a state of the art. Signal Process. 1990, 19, 259–299. [Google Scholar] [CrossRef]
Preprocessing Method | DR2D | FSST | SPWVD |
---|---|---|---|
Computational complexity |
Layers (DenseNet) | DenseNet-F22 | DenseNet-22 | ResNet-18 | Layers (ResNet) |
---|---|---|---|---|
- | Input Size (1): | Input Size (1): | Input Size (1): | - |
Convolution | conv, stride 2 | Convolution | ||
(Output Size: ) | (Output Size: ) | (Output Size: ) | ||
Pooling | max pooling, stride 2 | - | max pooling, stride 2 | Pooling |
(Output Size: ) | (Output Size: ) | |||
- | Input Size (2): | - | - | - |
(concat) | ||||
Convolution | conv, stride 2 | conv, stride 2 | - | - |
(Output Size: ) | (Output Size: ) | |||
- | Input Size (3): | - | - | - |
(concat) | ||||
Dense | ×2 | Residual | ||
Block (1) | (Output Size: ) | (Output Size: ) | Block (1) | |
conv | - | - | ||
Transition | (Output Size: ) | |||
Layer (1) | average pooling, stride 2 | |||
(Output Size: ) | ||||
Dense | Residual | |||
Block (2) | (Output Size: ) | (Output Size: ) | Block (2) | |
conv | - | - | ||
Transition | (Output Size: ) | |||
Layer (2) | average pooling, stride 2 | |||
(Output Size: ) | ||||
Dense | ×2 | Residual | ||
Block (3) | (Output Size: ) | (Output Size: ) | Block (3) | |
conv | - | - | ||
Transition | (Output Size: ) | |||
Layer (3) | average pooling, stride 2 | |||
(Output Size: ) | ||||
Dense | [ conv] | Residual | ||
Block (4) | (Output Size: ) | (Output Size: ) | Block (4) | |
global average pooling | global average pooling | |||
Classification | (Output Size: ) | (Output Size: ) | Classification | |
flatten | ||||
Layer | 256-D fully connected, | 512-D fully connected, | Layer | |
softmax | softmax | |||
Params | 0.9 M | 1.0 M | 11.2 M | Params |
FLOPs | FLOPs |
Modulation Type | CF (GHz) | MF (KHz) | FD (MHz) | PW (ns) | DC | EW (ns) |
---|---|---|---|---|---|---|
CW | [1, 5] | - | - | - | - | - |
TRIFM | [1, 5] | [200, 500] | [100, 200] | - | - | - |
SINFM | [1, 5] | [200, 500] | [100, 200] | - | - | - |
PAM | [1, 5] | - | - | [40, 70] | [1%, 4%] | - |
BPSK | [1, 5] | - | - | - | - | [50, 80] |
LFM_PULSE | [1, 5] | - | [20, 40] | [200, 500] | [20%, 33%] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yan, X.; Hao, X.; Yi, G.; Huang, D. Automatic Modulation Recognition of Radiation Source Signals Based on Data Rearrangement and the 2D FFT. Remote Sens. 2023, 15, 518. https://doi.org/10.3390/rs15020518
Liu Y, Yan X, Hao X, Yi G, Huang D. Automatic Modulation Recognition of Radiation Source Signals Based on Data Rearrangement and the 2D FFT. Remote Sensing. 2023; 15(2):518. https://doi.org/10.3390/rs15020518
Chicago/Turabian StyleLiu, Yangtian, Xiaopeng Yan, Xinhong Hao, Guanghua Yi, and Dingkun Huang. 2023. "Automatic Modulation Recognition of Radiation Source Signals Based on Data Rearrangement and the 2D FFT" Remote Sensing 15, no. 2: 518. https://doi.org/10.3390/rs15020518
APA StyleLiu, Y., Yan, X., Hao, X., Yi, G., & Huang, D. (2023). Automatic Modulation Recognition of Radiation Source Signals Based on Data Rearrangement and the 2D FFT. Remote Sensing, 15(2), 518. https://doi.org/10.3390/rs15020518