Spatiotemporal Characteristics of Horizontal Crustal Deformation in the Sichuan–Yunnan Region Using GPS Data
Abstract
:1. Introduction
2. Data and Methods
2.1. GPS Velocity Field
2.2. The Improved Least Squares Collocation Method
3. Results
3.1. Regular Grid Velocity Variations
3.2. Strain Rate Changes
4. Discussion
4.1. Validation of the Strain Rate Field Calculation in the Sichuan–Yunnan Region
4.2. Influence of Non-Tectonic Deformation on the Strain Rate Field Calculation
- (1)
- Systematic Bias between Velocity Fields
- (2)
- Station Spacing
- (3)
- Other Non-tectonic Deformations
4.3. Spatiotemporal Characteristics of the Strain Rate Field in the Sichuan–Yunnan Region
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Q.D.; Zhang, P.Z. Basic characteristics of active tectonics of China. Sci. China Ser. D Earth Sci. 2003, 46, 356–372. (In Chinese) [Google Scholar]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, X.W.; Chen, G.H. A new prediction model of seismic hazard for the Sichuan-Yunnan region based on the occurrence rate of large earthquakes. Chin. J. Geophys. 2020, 63, 1170–1182. (In Chinese) [Google Scholar]
- Wang, Q.X.; Xu, X.W. Strain characteristics of north-south seismic zone and the analysis of earthquake risk. J. Geod. Geodyn. 2020, 40, 23–39. (In Chinese) [Google Scholar]
- Wei, W.X.; Jiang, Z.S. Distribution and variation characteristics of strain rate field in Sichuan-Yunnan region. Earthquake 2015, 35, 11–20. (In Chinese) [Google Scholar]
- Zhao, B. Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geod. Geodyn. 2015, 6, 7–15. [Google Scholar] [CrossRef]
- McKenzie, D.P.; Parker, R.L. The North Pacific: An example of tectonics on a sphere. Nature 1967, 216, 1276–1280. [Google Scholar] [CrossRef]
- England, P.; McKenzie, D.P. A thin viscous sheet model for continental deformation. Geophys. J. Int. 1982, 70, 295–321. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.Z. Present-day crustal deformation in China constrained by Global Positioning System measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Shen, Z.K. Kinematics of present-day tectonic deformation of the Tibetan plateau and its vicinities. Seismol. Geol. 2014, 26, 367–377. [Google Scholar]
- Gan, W.J.; Zhang, P.Z. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. Solid Earth 2007, 112, 416. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; McCaffrey, R. Relative motion across the eastern Tibetan plateau: Contributions from faulting, internal strain and rotation rates. Tectonophysics 2013, 584, 240–256. [Google Scholar] [CrossRef]
- Liang, S.M.; Gan, W.J. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid Earth 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Wang, W.; Qiao, X. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophys. J. Int. 2017, 208, 1088–1102. [Google Scholar] [CrossRef]
- Rui, X.; Stamps, D.S. A geodetic strain rate and tectonic velocity model for China. Geochem. Geophys. Geosyst. 2018, 20, 1280–1297. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.Z. Present-day crustal movement and tectonic deformation in China continent. Sci. China Ser. D Earth Sci. 2001, 45, 865–874. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day tectonic deformation in continental China: Thirty years of GPS Observation and research. Earthq. Res. China 2020, 36, 660–683. (In Chinese) [Google Scholar]
- Xiang, Y.F.; Wang, H. GNSS imaging of strain rate changes and vertical crustal motions over the Tibetan Plateau. Remote Sens. 2021, 13, 4397. [Google Scholar] [CrossRef]
- Jiang, Z.S.; Fang, Y. The dynamic process of regional crustal movement and deformation before Wenchuan Ms8.0 earthquake. Chin. J. Geophys. 2009, 52, 505–518. (In Chinese) [Google Scholar]
- Savage, J.C.; Gan, W.J. Strain accumulation and rotation in the Eastern California Shear Zone. J. Geophys. Res. Solid Earth 2001, 106, 21995–22007. [Google Scholar] [CrossRef]
- Arnoso, J.; Riccardi, U. Strain Pattern and Kinematics of the Canary Islands from GNSS Time Series Analysis. Remote Sens. 2020, 12, 3297. [Google Scholar] [CrossRef]
- Jiang, Z.S.; Liu, J.N. The method of establishing strain field and velocity field of crustal movement using least square collocation. Chin. J. Geophys. 2010, 53, 1116–1117. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Y.Q.; Jiang, Z.S. Research on the method for entire calculation of GPS strain field by using spherical harmonic function. J. Geod. Geodyn. 2009, 29, 68–73. (In Chinese) [Google Scholar]
- Wu, Y.Q.; Jiang, Z.S. Application and method of GPS strain Calculating in whole mode using multi-surface function. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 1085–1089. (In Chinese) [Google Scholar]
- Wu, Y.Q.; Jiang, Z.S. The application and method of GPS strain calculation in whole mode using least square collocation in sphere surface. Chin. J. Geophys. 2009, 52, 1707–1714. (In Chinese) [Google Scholar] [CrossRef]
- Su, X.N.; Meng, G.J. Methodology and application of GPS strain field estimation based on multi-scale spherical wavelet. Chin. J. Geophys. 2016, 59, 1585–1595. (In Chinese) [Google Scholar]
- Kreemer, C.; Holt, W.E. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int. 2003, 154, 8–34. [Google Scholar] [CrossRef]
- Shen, Z.K.; Jackson, D.D. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J. Geophys. Res. Solid Earth 1996, 1012, 27957–27980. [Google Scholar] [CrossRef]
- Shen, Z.K.; Wang, M. Optimal Interpolation of Spatially Discretized Geodetic Data. Bull. Seismol. Soc. Am. 2016, 105, 2117–2127. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Jiang, Z.S. Comparison of GPS strain rate computing methods and their reliability. Geophys. J. Int. 2011, 185, 703–717. [Google Scholar] [CrossRef]
- Han, Z.J.; Xu, J. Active blocks and strong earthquakes in North China. Sci. China Ser. D Earth Sci. 2003, 33, 108–118. (In Chinese) [Google Scholar]
- Dang, Y.M.; Yang, Q. Block Movement and Strain Characteristics Effected by Earthquake in Sichuan-Yunnan Region. Acta Geod. Cartogr. Sin. 2018, 47, 559–566. (In Chinese) [Google Scholar]
- Jiang, Z.S.; Yang, G.H. Research on crustal movement in China continent and its relationship with strong earthquakes. J. Geod. Geodyn. 2006, 3, 1–9. (In Chinese) [Google Scholar]
- Yu, J.S.; Zhao, B. Analysis of GNSS postseismic deformation of Wenchuan earthquake. Acta Geod. Cartogr. Sin. 2018, 47, 1196–1206. (In Chinese) [Google Scholar]
- Zhang, P.Z.; Deng, Q.D. Strong earthquake activity and active blocks in mainland China. Sci. China Ser. D Earth Sci. 2003, 33, 12–20. [Google Scholar]
- Li, L.; Wu, Y. Dynamic deformation and fault locking of the Xianshuihe Fault Zone, Southeastern Tibetan Plateau: Implications for seismic hazards. Earth Planets Space 2022, 74, 35. [Google Scholar] [CrossRef]
- Deng, W.B.; Lan, M. Analysis of dynamic crustal deformation in Xinjiang by least squares collocation. Chin. J. Geol. 2022, 57, 958–974. (In Chinese) [Google Scholar]
- Bian, W.W.; Wu, J.C. Recent Crustal Deformation Based on Interpolation of GNSS Velocity in Continental China. Remote Sens. 2020, 12, 3753. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Wang, Y.; Shen, Z.K. Earthquake potential of the Sichuan-Yunnan region, western China. J. Asian. Earth. Sci. 2015, 107, 232–243. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Du, X.S.; Zhu, S.; Li, L.Y.; Sun, D.Y. Recent movement changes of main fault zones in the Sichuan-Yunnan region and their relevance to seismic activity. Sci. China Ser. D Earth Sci. 2016, 46, 706–719. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.Z.; Wang, E.N.; Shen, Z.K.; Gan, W.J.; Qiao, X.N.; Meng, G.J. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2008, 38, 582–597. (In Chinese) [Google Scholar] [CrossRef]
- Xu, X.W.; Cheng, J.; Xu, C.; Li, X.; Yu, G.H.; Chen, G.H.; Tan, X.B.; Wu, X.Y. Discussion on block kinematic model and future themed areas for earthquake occurrence in the Tibetan plateau: Inspiration from the Ludian and Jinggu earthquakes. Seismol. Geol. 2014, 36, 1116–1134. (In Chinese) [Google Scholar]
- Zhao, J.; Jiang, Z.S.; Niu, A.F.; Liu, J.; Wu, Y.Q.; Wei, W.X.; Liu, X.X.; Yan, W. Study on dynamic characteristics of fault locking and fault slip deficit in the eastern boundary of the Sichuan-Yunnan rhombic block. Chin. J. Geophys. 2015, 58, 872–885. (In Chinese) [Google Scholar]
- Yin, D.; Dong, P.Y.; Cao, J.L.; Shi, Y.L. Numerical analysis of the seismic hazard in Sichuan-Yunnan region. Chin. J. Geophys. 2022, 65, 1612–1627. (In Chinese) [Google Scholar]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Version | Period | Number of Stations | Mean Side Length 1 (km) | Mean Uncertainty (mm/yr) | Source | |
---|---|---|---|---|---|---|
V0 | 1999–2002 | 181 | 42.8 | 2.9 | 2.3 | Zhang et al. [10] |
V1 | 1999–2004 | 210 | 40.8 | 1.8 | 1.7 | Gan et al. [11] |
V2 | 1999–2009 | 312 | 31.6 | 1.5 | 1.4 | Zhang et al. [12] |
V3 | 1999–2014 | 272 | 35.2 | 1.5 | 1.5 | Wang et al. [14] |
V4 | 1999–2016 | 400 | 28.1 | 0.5 | 0.5 | Wang & Shen. [2] |
Item | Mean (Nanostrain/yr) | Min (Nanostrain/yr) | Max (Nanostrain/yr) |
---|---|---|---|
33.1 ± 25.8 | 1.5 | 96.8 | |
28.2 ± 16.8 | 0.3 | 79.5 | |
29.2 ± 12.1 | 0.4 | 82.0 | |
31.9 ± 9.9 | 2.2 | 86.7 | |
29.6 ± 3.4 | 4.0 | 73.6 | |
−4.8 | −86.5 | 22.2 | |
−3.8 | −86.0 | 23.4 | |
−1.2 | −87.1 | 50.2 | |
−3.5 | −83.3 | 25.5 | |
7.8 ± 26.0 | −125.0 | 64.9 | |
3.0 ± 16.8 | −23.8 | 31.0 | |
2.2 ± 12.1 | −26.2 | 33.2 | |
1.2 ± 9.9 | −42.6 | 63.8 | |
0.8 ± 3.5 | −27.0 | 22.8 | |
−4.7 | −58.5 | 111.2 | |
−5.5 | −64.0 | 110.6 | |
−6.7 | −70.5 | 124.4 | |
−7.0 | −69.4 | 115.5 |
Station | Longitude (°E) | Latitude (°N) | Velocity and its Uncertainty (mm/yr) | ||||
---|---|---|---|---|---|---|---|
V0 | V1 | V2 | V3 | V4 | |||
LUZH | 105.41 | 28.87 | 8.4 ± 1.3 | 7.3 ± 1.2 | 7.8 ± 0.9 | 6.7 ± 0.4 | 9.0 ± 0.3 |
SNMX | 106.69 | 33.13 | 8.1 ± 1.0 | 7.0 ± 1.5 | 6.8 ± 0.9 | 6.4 ± 0.6 | 8.1 ± 0.5 |
JB24 | 106.03 | 30.80 | 8.2 ± 1.6 | 7.7 ± 1.2 | 7.8 ± 0.9 | 6.8 ± 1.0 | 7.2 ± 0.5 |
JB25 | 106.67 | 26.42 | 8.3 ± 1.6 | 7.8 ± 1.3 | 6.9 ± 0.9 | 6.4 ± 0.7 | 6.6 ± 0.6 |
Scheme | Percentage of Total Number of Stations | Number of Stations | Mean Side Length of Delaunay Triangulation (km) |
---|---|---|---|
A | 100% | 98 | 67 |
B | 90% | 89 | 71 |
C | 80% | 79 | 76 |
D | 68% | 68 | 82 |
E | 59% | 58 | 90 |
F | 48% | 47 | 101 |
Scheme | Second Strain Rate Invariant Difference | Dilation Rate Difference | ||
---|---|---|---|---|
Mean (Nanostrain/yr) | RMSE (Nanostrain/yr) | Mean (Nanostrain/yr) | RMSE (Nanostrain/yr) | |
B−A | −0.15 | 0.42 | −0.02 | 0.55 |
C−A | −0.05 | 0.69 | 0.07 | 1.09 |
D−A | 0.35 | 1.28 | 0.12 | 1.75 |
E−A | 1.14 | 2.14 | 0.22 | 2.68 |
F−A | 2.49 | 4.25 | 0.87 | 4.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Ding, K.; Lan, G.; Wu, Y.; Liu, Y.; Peng, S.; Li, T. Spatiotemporal Characteristics of Horizontal Crustal Deformation in the Sichuan–Yunnan Region Using GPS Data. Remote Sens. 2023, 15, 4724. https://doi.org/10.3390/rs15194724
Zhao Q, Ding K, Lan G, Wu Y, Liu Y, Peng S, Li T. Spatiotemporal Characteristics of Horizontal Crustal Deformation in the Sichuan–Yunnan Region Using GPS Data. Remote Sensing. 2023; 15(19):4724. https://doi.org/10.3390/rs15194724
Chicago/Turabian StyleZhao, Quanshu, Kaihua Ding, Guanghong Lan, Yunlong Wu, Yuan Liu, Shengxiang Peng, and Tianao Li. 2023. "Spatiotemporal Characteristics of Horizontal Crustal Deformation in the Sichuan–Yunnan Region Using GPS Data" Remote Sensing 15, no. 19: 4724. https://doi.org/10.3390/rs15194724
APA StyleZhao, Q., Ding, K., Lan, G., Wu, Y., Liu, Y., Peng, S., & Li, T. (2023). Spatiotemporal Characteristics of Horizontal Crustal Deformation in the Sichuan–Yunnan Region Using GPS Data. Remote Sensing, 15(19), 4724. https://doi.org/10.3390/rs15194724