Research on UT1-UTC and LOD Prediction Algorithm Based on Denoised EAM Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Analysis
2.2. The Denoised EAM Dataset
2.3. Forecasting Methods
3. Results Comparison
3.1. Error Analysis
3.2. Comparison of UT1-UTC Forecasts with IERS
3.3. Comparison of LOD Forecasts with IERS
4. Discussion
4.1. Discussion on Order of AR Model
4.2. Discussion on Prediction Error
4.3. Perspective on UT1-UTC and LOD Forecast
- (a)
- According to the comparison between Case 1 and Case 2, as well as the GAM spectrum analysis results, we plan to evaluate and use an improved tidal model for EOP forecasting research in the future, for example, Ray and Erofeeva [48], to expand the 62 solid Earth tidal constituents in future IERS Conventions’ tidal models.
- (b)
- Comparing Case 1 with Bulletin A, it is evident that the EAM forecast dataset has a significant impact on short-term UT1-UTC and LOD forecasts. Therefore, it is recommended to consider using geophysical models or ML techniques to extend the 6-day EAM forecast to 10–15 days and then conduct corresponding UT1/LOD forecast experiments.
- (c)
- The forecasts are sensitive to initial conditions. It is suggested that combination algorithms to improve the accuracy of the initial values of UT1-UTC and LOD on day 0 are used.
- (d)
- This study used a preliminary denoising method on the EAM and EAM 1–6 days forecast datasets, but a detailed investigation has not been conducted. Future research could focus on specific accuracy studies for the EAM dataset and its forecast dataset to provide estimations on the uncertainties of the EAM dataset.
5. Conclusions
- (a)
- Through the UT1-UTC and LOD forecast comparison experiments of Case 1, Case 3, and Case 4, it has been demonstrated that using GAM and Kalman filtering to denoise the EAM and EAM 6-day forecast data can significantly improve the forecast accuracy of UT1-UTC and LOD. The improvement is particularly significant in the short-term forecast of 1–6 days, which also confirms the effectiveness of noise suppression of EAM on EOP predictions.
- (b)
- By comparing the UT1-UTC and LOD between Case 1 and Case 2, we found that adding the least-squares fitting periodic terms of 23.9 days and 91.3 days can significantly improve the forecast accuracy in the medium-to-long term of 30–80 days. This means model fitting of tidal components with an amplitude of 5 us can enhance the accuracy of the forecast.
- (c)
- Through the GAM spectral analysis, it is confirmed that the Earth tidal models from the IERS 2010 Conventions proposed in the 1980s and 1990s cannot fully compensate for tidal effects. This suggests that we need to continuously improve and adopt better tidal models in studies of geodynamics, Earth rotation, and EOP measurement and predictions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nastula, J.; Chin, T.M.; Gross, R.; Sliwinska, J.; Winska, M. Smoothing and predicting celestial pole offsets using a Kalman filter and smoother. J. Geod. 2020, 94, 2–17. [Google Scholar] [CrossRef]
- Gambis, D.; Luzum, B. Earth rotation monitoring, UT1-UTC determination and prediction. Metrologia 2011, 48, 165–170. [Google Scholar] [CrossRef]
- Gambis, D. Monitoring earth orientation using space-geodetic techniques: State of the art and prospective. J. Geod. 2004, 78, 295–303. [Google Scholar] [CrossRef]
- Kalarus, M.; Schuh, H.; Kosek, W.; Akyilmaz, O.; Bizouard, C.; Gambis, D.; Gross, R.; Jovanovi’c, B.; Kumakshev, S.; Kutterer, H.; et al. Achievements of the Earth orientation parameters prediction comparison campaign. J. Geod. 2010, 84, 587–596. [Google Scholar] [CrossRef]
- Schuh, H.; Ulrich, M.; Egger, D.; Müller, J.; Schwegmann, W. Prediction of Earth orientation parameters by artificial neural networks. J. Geod. 2002, 76, 247–258. [Google Scholar] [CrossRef]
- Schuh, H.; Johannes, B.; Heinkelmann, R.; Hobiger, T.; Jorge, M.C.P.; Pany, A.; Tanir, E.; Teke, K.; Todorova, S. International VLBI Service for Geodesy and Astrometry 2006 Annual Report. No. NASA/TP-2007-214151. 2007; pp. 208–211. Available online: https://ivscc.gsfc.nasa.gov/publications/ar2006/IVS-2006-Annual-Report.pdf (accessed on 12 August 2023).
- Nilsson, T.; Böhm, J.; Schuh, H. Sub-diurnal earth rotation variations observed by VLBI. Artif. Satell. 2010, 45, 49–55. [Google Scholar] [CrossRef]
- Nilsson, T.; Böhm, J.; Schuh, H. Universal time from VLBI single-baseline observations during CONT08. J. Geod. 2011, 85, 415–423. [Google Scholar] [CrossRef]
- Nilsson, T.; Heinkelmann, R.; Karbon, M.; Raposo-Pulido, V.; Soja, P.; Schuh, H. Earth orientation parameters estimated from VLBI during the CONT11 campaign. J. Geod. 2014, 88, 491–502. [Google Scholar] [CrossRef]
- Byram, S.; Hackman, C. High-precision GNSS orbit, clock and EOP estimation at the United States Naval Observatory. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012. [Google Scholar] [CrossRef]
- Mireault, Y.; Kouba, J. IGS earth rotation parameters. GPS Solut. 1999, 3, 59–72. [Google Scholar] [CrossRef]
- Zajdel, R.; Sośnica, K.; Bury, G.; Dach, R.; Prange, L. System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut. 2020, 24, 74. [Google Scholar] [CrossRef]
- Hein, G.W. Status, perspectives and trends of satellite navigation. Satell. Navig. 2020, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Coulot, D.; Pollet, A.; Collilieux, X.; Berio, P. Global optimization of core station networks for space geodesy: Application to the referencing of the SLR EOP with respect to ITRF. J. Geod. 2010, 84, 31. [Google Scholar] [CrossRef]
- Pavlov, D. Role of lunar laser ranging in realization of terrestrial, lunar, and ephemeris reference frames. J. Geod. 2020, 94, 5. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The international laser ranging service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Angermann, D.; Seitz, M.; Drewes, H. Analysis of the DORIS contributions to ITRF2008. Adv. Space Res. 2010, 46, 1633–1647. [Google Scholar] [CrossRef]
- Moreaux, G.; Lemoine, F.G.; Capdeville, H.; Kuzin, S.; Otten, M.; Stepanek, P.; Willis, P.; Ferrage, P. The international DORIS service contribution to the 2014 realization of the international terrestrial reference frame. Adv. Space Res. 2016, 58, 2479–2504. [Google Scholar] [CrossRef]
- Willis, P.; Fagard, H.; Ferrage, P.; Lemoine, F.G.; Noll, C.E.; Noomen, R.; Otten, M.; Ries, J.C.; Rothacher, M.; Soudarin, L.; et al. The international DORIS service (IDS): Toward maturity. Adv. Space Res. 2010, 45, 1408–1420. [Google Scholar] [CrossRef]
- Ratcliff, J.T.; Gross, R.S. Combinations of Earth orientation measurements: SPACE2008, COMB2008, and POLE2008. JPL Publ. 2010, 10–14, 1–27. [Google Scholar]
- Artz, T.; Bernhard, L.; Nothnagel, A.; Steigenberger, P.; Tesmer, S. Methodology for the combination of sub-daliy earth rotation from GPS and VLBI observations. J. Geod. 2012, 86, 221–239. [Google Scholar] [CrossRef]
- Bizouard, C.; Lambert, S.; Gattano, C.; Becker, O.; Richard, J.-Y. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geod. 2019, 93, 621–633. [Google Scholar] [CrossRef]
- Gambis, D.; Bizouard, C. Monitoring UT1-UTC from astrogeodetic techniques at the EOP Center of the IERS. In Proceedings of the 28th IAU General Assembly, Beijing, China, 20–31 August 2012; International Astronomical Union: Paris, France, 2009; pp. 207–208. [Google Scholar]
- Akulenko, L.D.; Kumakshev, S.A.; Markov, Y.G. Motion of the Earth’s pole. Dokl. Phys. 2002, 47, 78–84. [Google Scholar] [CrossRef]
- Akulenko, L.D.; Kumakshev, S.A.; Rykhlova, L.V. A model for the polar motion of the deformable Earth adequate for astrometric data. Astron. Rep. 2002, 46, 74–82. [Google Scholar] [CrossRef]
- Akulenko, L.D.; Kumakshev, S.A.; Rykhlova, L.V. Forecasting the polar motions of the deformable Earth. Astron. Rep. 2002, 46, 858–866. [Google Scholar] [CrossRef]
- Kosek, W.; Kalarus, M.; Niedzielski, T. Forecasting of the Earth orientation parameters comparison of different algorithms. In The Celestial Reference Frame for the Future, Proceedings of the Journèes 2007 Systèmes Deréférence Spatio-Temporels, Paris, France, 17–19 September 2007; Capitaine, N., Ed.; Observatoire de Paris, Systèmes de RéférenceTemps-Espace: Paris, France, 2008; pp. 155–158. [Google Scholar]
- Guo, J.Y.; Li, Y.B.; Dai, C.L.; Shum, C.K. A technique to improve the accuracy of Earth orientation prediction algorithms based on least squares extrapolation. J. Geodyn. 2013, 70, 36–48. [Google Scholar] [CrossRef]
- Wang, Q.J.; Liao, D.C.; Zhou, Y.H. Real-time rapid prediction of variations of Earth’s rotational rate. Chin. Sci. Bull. 2008, 53, 969–973. [Google Scholar] [CrossRef]
- Yu, L.; Guo, M.; Hu, D.D.; Cai, H.-B.; Zhao, D.-N.; Hu, Z.-P.; Gao, Y.-P. Short-term prediction of UT1-UTC-UTC by combination of the grey model and neural networks. Adv. Space Res. 2017, 59, 524–531. [Google Scholar]
- Kosek, W.; Kalarus, M.; Johnson, T.J.; Wooden, W.H.; McCarthy, D.D.; Popinski, W. A comparison of LOD and UT1-UTC-UTC forecasts by different combination prediction techniques. Artif. Satell. 2005, 40, 119–125. Available online: https://www.researchgate.net/publication/236149838 (accessed on 13 August 2023).
- Kosek, W.; Kalarus, M.; Johnson, T.J.; Wooden, W.H.; McCarthy, D.D.; Popinski, W. A comparison of UT1-UTC-UTC forecasts by different prediction techniques. Proc. Journeys Syst. De Ref. Spatiotemporal 2004, 140–141. Available online: https://www.researchgate.net/publication/263529654 (accessed on 13 August 2023).
- Freedman, A.P.; Steppe, J.A.; Dickey, J.O.; Eubanks, T.M.; Sung, L.Y. The short-term prediction of universal time and length of day using atmospheric angular momentum. J. Geophys. Res. 1994, 99, 6981–6996. [Google Scholar] [CrossRef]
- Gross, R.S.; Eubanks, T.M.; Steppe, J.A.; Freedman Dickey, J.O.; Runge, T.F. A Kalman filter-based approach to combining independent Earth-orientation series. J. Geod. 1998, 72, 215–235. [Google Scholar] [CrossRef]
- Xu, X.Q.; Zhou, Y.H.; Liao, X.H. Short-term earth orientation parameters predictions by combination of the least-squares, AR model and Kalman filter. J. Geodyn. 2012, 62, 83–86. [Google Scholar] [CrossRef]
- Dill, R.; Dobslaw, H.; Thomas, M. Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere. J. Geod. 2019, 93, 287–295. [Google Scholar] [CrossRef]
- Yang, Y.G.; Xu, T.H.; Sun, Z.Z.; Nie, W.F.; Fang, Z.L. Middle- and Long-Term UT1-UTC-UTC Prediction Based on Constrained Polynomial Curve Fitting, Weighted Least Squares and Autoregressive Combination Model. Remote Sens. 2022, 14, 3252. [Google Scholar] [CrossRef]
- Tomasz, K.; Henryk, D.; Justyna, Ś.; Jolanta, N.; Małgorzata, W.; Aleksander, P. Evaluation of selected short-term predictions of UT1-UTC-UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth Planets Space 2022, 74, 191. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wu, Y.W.; Zhao, X.; Yang, X.H.; Zhang, S.G. Piecewise UT1-UTC prediction based on the Earth’s fluid effective angular momentum function. J. Time Freq. 2023, 46, 94–104. [Google Scholar]
- Jungclaus, J.H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; VonStorch, J.S. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 2013, 5, 422–446. [Google Scholar] [CrossRef]
- Dill, R. Hydrological Model LSDM for Operational Earth Rotation and Gravity Field Variations; Scientific Technical Report STR 08/09; GFZ: Potsdam, Germany, 2008; p. 35. [Google Scholar]
- Dobslaw, H.; Dill, R. Predicting earth orientation changes from global forecasts of atmosphere hydrosphere dynamics. Adv. Space Res. 2018, 61, 1047–1054. [Google Scholar] [CrossRef]
- Dobslaw, H.; Dill, R. Product Description Document: Effective Angular Momentum Functions from Earth System Modelling at GeoForschungsZen truminPotsdam. 2019. Available online: http://rz-vm115.gfz-potsdam.de:8080/repository/entry/show?entryid=e8e59d73-c0c2-4a9d-b53b-f2cd70f85e28 (accessed on 12 August 2023).
- Tamisiea, M.E.; Hill, E.M.; Ponte, R.M.; Davis, J.L.; Velicogna, I.; Vinogradova, N.T. Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Hagemann, S.; Dumenil, L. A parametrization of the waterflow for the global scale. Clim. Dynam. 1998, 14, 17–31. [Google Scholar] [CrossRef]
- Petti, G.; Luzum, B. IERS Conventions 2010; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010; ISBN 3-89888-989-6. [Google Scholar]
- Barnes, R.T.H.; Hide, A.; White, A.; Wilson, C.A. Atmospheric angular momentum fluctuations. Length-of-day changes and polar motion. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1983, 387, 31–73. [Google Scholar] [CrossRef]
- Ray, R.D.; Erofeeva, S.Y. Long-period tidal variations in the length of day. J. Geophys. Res. 2014, 119, 1498–1509. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Wu, Y.W.; Zhao, X.; Yang, X.Y. Improved Prediction of polar motions by piecewise parameterization. Artif. Satell. 2022, 57, 290–299. [Google Scholar] [CrossRef]
- Xu, X.-Q.; Zhou, Y.-H.; Duan, P.-S.; Fang, M.; Kong, Z.-Y.; Xu, C.-C.; An, X.-R. Contributions of oceanic and continental AAM to interannual variation in Delta LOD with the detection of 2020–2021 La Nina event. J. Geod. 2022, 96, 43. [Google Scholar] [CrossRef]
- Kiani Shahvandi, M.; Gou, J.; Schartner, M.; Soja, B. Data driven approaches for the prediction of Earth’s effective angular momentum functions. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6550–6553. [Google Scholar]
- Kiani Shahvandi, M.; Soja, B. Small geodetic datasets and deep networks: Attention-based residual LSTM autoencoder stacking for geodetic time series. In Machine Learning, Optimization, and Data Science, Proceedings of the 7th International Conference, LOD 2021, Grasmere, UK, 4–8 October 2021, Revised Selected Papers, Part I; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 13163. [Google Scholar] [CrossRef]
- Soja, B.; Kiani Shahvandi, M.; Schartner, M.; Gou, J.; Kłopotek, G.; Crocetti, L.; Awadaljeed, M. The New Geodetic Prediction Center at ETH Zurich. In Proceedings of the New Geodetic Prediction Center at ETH Zurich, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022; p. EGU22-9285. [Google Scholar] [CrossRef]
MAE | Case 1 | Case 2 | Case 3 | Case 4 | Bulletin A | Reduction A | Reduction 4 |
---|---|---|---|---|---|---|---|
0 days | 0.0492 | 0.0492 | 0.0492 | 0.0492 | 0.0477 | −3.14% | 0 |
1 day | 0.0557 | 0.0555 | 0.0582 | 0.0625 | 0.0638 | 12.70% | 10.88% |
2 days | 0.0697 | 0.0697 | 0.0760 | 0.0868 | 0.0925 | 24.65% | 19.70% |
3 days | 0.0876 | 0.0878 | 0.0975 | 0.1147 | 0.1268 | 30.91% | 23.63% |
4 days | 0.1084 | 0.1095 | 0.1224 | 0.1461 | 0.1614 | 32.84% | 25.80% |
5 days | 0.1328 | 0.1337 | 0.1513 | 0.1806 | 0.1956 | 32.11% | 26.47% |
6 days | 0.1592 | 0.1604 | 0.1812 | 0.2175 | 0.2319 | 31.35% | 26.80% |
10 days | 0.3603 | 0.3674 | 0.3836 | 0.4482 | 0.4317 | 16.54% | 19.61% |
15 days | 0.8637 | 0.8766 | 0.8832 | 1.0258 | 0.9179 | 5.90% | 15.80% |
20 days | 1.4804 | 1.4998 | 1.4930 | 1.6782 | 1.6257 | 8.94% | 11.79% |
25 days | 2.1872 | 2.2153 | 2.1928 | 2.3836 | 2.4756 | 11.65% | 8.24% |
30 days | 2.9169 | 3.0532 | 2.9081 | 3.1859 | 3.3373 | 12.60% | 8.44% |
35 days | 3.5196 | 3.8481 | 3.5072 | 3.9641 | 4.0882 | 13.91% | 11.21% |
40 days | 4.1864 | 4.6201 | 4.1675 | 4.7416 | 4.7224 | 11.35% | 11.71% |
45 days | 4.8472 | 5.3831 | 4.8271 | 5.5233 | 5.3547 | 9.48% | 12.24% |
50 days | 5.6589 | 5.9098 | 5.6644 | 6.0611 | 5.9999 | 5.68% | 6.64% |
55 days | 6.2291 | 6.4405 | 6.2257 | 6.5919 | 6.8544 | 9.12% | 5.50% |
60 days | 6.7857 | 6.9512 | 6.7813 | 7.2770 | 7.7938 | 12.93% | 6.75% |
65 days | 7.5204 | 7.6214 | 7.5117 | 7.9717 | 8.6121 | 12.68% | 5.67% |
70 days | 8.2271 | 8.3017 | 8.2528 | 8.5370 | 9.2820 | 11.37% | 3.63% |
75 days | 8.8524 | 9.0037 | 8.8627 | 9.0730 | 9.7400 | 9.11% | 2.43% |
80 days | 9.4235 | 9.6502 | 9.4215 | 9.6683 | 9.8954 | 4.77% | 2.53% |
85 days | 10.1537 | 10.4142 | 10.1360 | 10.3865 | 10.0865 | −0.67% | 2.24% |
90 days | 10.9139 | 11.1243 | 10.8754 | 11.1187 | 10.3257 | −5.70% | 1.84% |
MAE | Case 1 | Case 2 | Case 3 | Case 4 | Reduction 4 | Reduction 3 | Reduction 2 |
---|---|---|---|---|---|---|---|
0 days | 0.0690 | 0.0690 | 0.0690 | 0.0690 | 0 | 0 | 0 |
1 day | 0.0255 | 0.0259 | 0.0300 | 0.0345 | 26.09% | 15.00% | 1.54% |
2 days | 0.0272 | 0.0276 | 0.0312 | 0.0364 | 25.27% | 12.82% | 1.45% |
3 days | 0.0293 | 0.0299 | 0.0338 | 0.0382 | 23.30% | 13.31% | 2.01% |
4 days | 0.0321 | 0.0328 | 0.0379 | 0.0424 | 24.29% | 15.30% | 2.13% |
5 days | 0.0352 | 0.0355 | 0.0399 | 0.0441 | 20.18% | 11.78% | 0.85% |
6 days | 0.0432 | 0.0436 | 0.0456 | 0.0504 | 14.29% | 5.26% | 0.92% |
10 days | 0.0935 | 0.0944 | 0.0947 | 0.1006 | 7.06% | 1.28% | 0.95% |
15 days | 0.1308 | 0.1317 | 0.1320 | 0.1457 | 10.23% | 0.91% | 0.68% |
20 days | 0.1465 | 0.1451 | 0.1464 | 0.1527 | 4.06% | −0.06% | −0.96% |
25 days | 0.1572 | 0.1647 | 0.1564 | 0.1681 | 6.48% | −0.51% | 4.55% |
30 days | 0.1694 | 0.1794 | 0.1690 | 0.1809 | 6.36% | −0.23% | 5.57% |
35 days | 0.1828 | 0.1913 | 0.1824 | 0.1991 | 8.19% | −0.22% | 4.44% |
40 days | 0.1953 | 0.1996 | 0.1949 | 0.2088 | 6.47% | −0.21% | 2.15% |
45 days | 0.1995 | 0.2025 | 0.1992 | 0.2115 | 5.67% | −0.15% | 1.48% |
50 days | 0.2028 | 0.2061 | 0.2028 | 0.2086 | 2.78% | 0% | 1.60% |
55 days | 0.2018 | 0.2051 | 0.2016 | 0.2085 | 3.21% | −0.10% | 1.61% |
60 days | 0.2121 | 0.2151 | 0.2119 | 0.2159 | 1.76% | −0.09% | 1.39% |
65 days | 0.2242 | 0.2289 | 0.2243 | 0.2313 | 3.07% | 0.04% | 2.05% |
70 days | 0.2264 | 0.2307 | 0.2261 | 0.2341 | 3.29% | −0.13% | 1.86% |
75 days | 0.2337 | 0.2350 | 0.2334 | 0.2387 | 2.09% | −0.13% | 0.55% |
80 days | 0.2446 | 0.2448 | 0.2442 | 0.2495 | 1.96% | −0.16% | 0.08% |
85 days | 0.2480 | 0.2481 | 0.2474 | 0.2548 | 2.67% | −0.24% | 0.04% |
90 days | 0.2505 | 0.2507 | 0.2504 | 0.2603 | 3.76% | −0.04% | 0.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, Y.; Yao, D.; Liu, J.; Nan, K.; Ma, L.; Cheng, X.; Yang, X.; Zhang, S. Research on UT1-UTC and LOD Prediction Algorithm Based on Denoised EAM Dataset. Remote Sens. 2023, 15, 4654. https://doi.org/10.3390/rs15194654
Li X, Wu Y, Yao D, Liu J, Nan K, Ma L, Cheng X, Yang X, Zhang S. Research on UT1-UTC and LOD Prediction Algorithm Based on Denoised EAM Dataset. Remote Sensing. 2023; 15(19):4654. https://doi.org/10.3390/rs15194654
Chicago/Turabian StyleLi, Xishun, Yuanwei Wu, Dang Yao, Jia Liu, Kai Nan, Langming Ma, Xuan Cheng, Xuhai Yang, and Shougang Zhang. 2023. "Research on UT1-UTC and LOD Prediction Algorithm Based on Denoised EAM Dataset" Remote Sensing 15, no. 19: 4654. https://doi.org/10.3390/rs15194654
APA StyleLi, X., Wu, Y., Yao, D., Liu, J., Nan, K., Ma, L., Cheng, X., Yang, X., & Zhang, S. (2023). Research on UT1-UTC and LOD Prediction Algorithm Based on Denoised EAM Dataset. Remote Sensing, 15(19), 4654. https://doi.org/10.3390/rs15194654