HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network
Abstract
1. Introduction
2. Materials and Methods
2.1. HFr Network
2.2. ISPRA Weather Station
2.3. Mediterranean Wave Model
2.4. Statistical Methods
3. Results
3.1. MWM/ERA5@2km Wind Speed and Wind Direction Comparisons
3.2. MWM/ISPRA Wind Speed and Wind Direction Comparisons
3.3. Wind Direction Analysis: MWM, ISPRA and HFr
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Alvarez Fanjul, E.; Terrill, E.; Otero, M.; et al. The Global High Frequency Radar Network. Front. Mar. Sci. 2019, 6, 164. [Google Scholar] [CrossRef]
- Huang, W.; Gill, E.W. (Eds.) Ocean Remote Sensing Technologies—High-Frequency, Marine and GNSS-Based Radar; SciTech Publishing: Luxembourg, 2021. [Google Scholar]
- Tseng, Y.H.; Lu, C.Y.; Zheng, Q.; Ho, C.R. Characteristic analysis of sea surface currents around Taiwan Island from CODAR observations. Remote Sens. 2021, 13, 3025. [Google Scholar] [CrossRef]
- Rubio, A.; Mader, J.; Corgnati, L.; Mantovani, C.; Griffa, A.; Novellino, A.; Quentin, C.; Wyatt, L.; Schulz-Stellenfleth, J.; Horstmann, J.; et al. HF radar activity in European coastal seas: Next steps toward a pan-European HF radar network. Front. Mar. Sci. 2017, 4, 8. [Google Scholar] [CrossRef]
- Gurgel, K.-W.; Antonischki, G.; Essen, H.-H.; Schlick, T. Wellen radar WERA: A new ground-wave HF radar for ocean remote sensing. Coast. Eng. 1999, 37, 219–234. [Google Scholar] [CrossRef]
- Barrick, D.E. Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci. 1977, 12, 415–424. [Google Scholar] [CrossRef]
- Lorente, P.; Aguiar, E.; Bendoni, M.; Berta, M.; Brandini, C.; Cáceres-Euse, A.; Capodici, F.; Cianelli, D.; Ciraolo, G.; Corgnati, L.; et al. Coastal high-frequency radars in the Mediterranean—Part 1: Status of operations and a framework for future development. Ocean Sci. 2022, 18, 761–795. [Google Scholar] [CrossRef]
- Reyes, E.; Aguiar, E.; Bendoni, M.; Berta, M.; Brandini, C.; Cáceres-Euse, A.; Capodici, F.; Cardin, V.; Cianelli, D.; Ciraolo, G.; et al. Coastal high-frequency radars in the Medi-terranean—Part 2: Applications in support of science priorities and societal needs. Ocean Sci. 2022, 18, 797–837. [Google Scholar] [CrossRef]
- Wyatt, L. Ocean wave measurement. In Ocean Remote Sensing Technologies—High-Frequency, Marine and GNSS-Based Radar; Huang, W., Gill, E.W., Eds.; SciTech Publishing: Raleigh, NC, USA, 2021; pp. 145–178. [Google Scholar]
- Saviano, S.; Kalampokis, A.; Zambianchi, E.; Uttieri, M. A year-long assessment of wave measurements retrieved from an HF radar network in the Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea). J. Oper. Oceanogr. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Saviano, S.; De Leo, F.; Besio, G.; Zambianchi, E.; Uttieri, M. HF Radar Measurements of Surface Waves in the Gulf of Naples (Southeastern Tyrrhenian Sea): Comparison With Hindcast Results at Different Scales. Front. Mar. Sci. 2020, 7, 492. [Google Scholar] [CrossRef]
- Basañez, A.; Lorente, P.; Montero, P.; Álvarez-Fanjul, E.; Pérez-Muñuzuri, V. Quality Assessment and practical interpretation of the wave parameters estimated by HF Radars in NW Spain. Remote Sens. 2020, 12, 598. [Google Scholar] [CrossRef]
- Bué, I.; Semedo, Á.; Catalão, J. Evaluation of HF Radar Wave Measurements in Iberian Peninsula by Comparison with Satellite Altimetry and in Situ Wave Buoy Observations. Remote Sens. 2020, 12, 3623. [Google Scholar] [CrossRef]
- Lorente, P.; Lin-Ye, J.; García-León, M.; Reyes, E.; Fernandes, M.; Sotillo, M.G.; Espino, M.; Ruiz, M.I.; Gracia, V.; Perez, S.; et al. On the Performance of High Frequency Radar in the Western Mediterranean During the Record-Breaking Storm Gloria. Front. Mar. Sci. 2021, 8, 205. [Google Scholar] [CrossRef]
- Ludeno, G.; Uttieri, M. Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”. J. Mar. Sci. Eng. 2020, 8, 560. [Google Scholar] [CrossRef]
- Wyatt, L.R. Progress towards an HF Radar Wind Speed Measurement Method Using Machine Learning. Remote Sens. 2022, 14, 2098. [Google Scholar] [CrossRef]
- Wyatt, L.R.; Green, J.J. Swell and wind-sea partitioning of HF radar directional spectra. J. Oper. Oceanogr. 2022. [Google Scholar] [CrossRef]
- Lopez, G.; Conley, D.C. Comparison of HF Radar Fields of Directional Wave Spectra Against In Situ Measurements at Multiple Locations. J. Mar. Sci. Eng. 2019, 7, 271. [Google Scholar] [CrossRef]
- Wyatt, L.R. A comparison of scatterometer and HF radar wind direction measurements. J. Oper. Oceanogr. 2018, 11, 54–63. [Google Scholar] [CrossRef]
- Falco, P.; Buonocore, B.; Cianelli, D.; De Luca, L.; Giordano, A.; Iermano, I.; Kalampokis, A.; Saviano, S.; Uttieri, M.; Zambardino, G. Dynamics and sea state in the Gulf of Naples: Potential use of high-frequency radar data in an operational oceanographic context. J. Oper. Oceanogr. 2016, 9, 33–45. [Google Scholar] [CrossRef]
- Mali, M.; Di Leo, A.; Giandomenico, S.; Spada, L.; Cardellicchio, N.; Calò, M.; Fedele, A.; Ferraro, L.; Milia, A.; Renzi, M.; et al. Multivariate tools to investigate the spatial contaminant distribution in a highly anthropized area (Gulf of Naples, Italy). Environ. Sci. Pollut. Res. 2022, 29, 62281–62298. [Google Scholar] [CrossRef]
- Del Gaizo, G.; Russo, L.; Abagnale, M.; Buondonno, A.; Furia, M.; Saviano, S.; Vargiu, M.; Conversano, F.; Margiotta, F.; Saggiomo, M.; et al. An autumn biodiversity survey on heterotrophic and mixotrophic protists along a coast-to-offshore transect in the Gulf of Naples (Italy). Adv. Oceanogr. Limnol. 2021, 12. [Google Scholar] [CrossRef]
- Uttieri, M.; Cianelli, D.; Buongiorno Nardelli, B.; Buonocore, B.; Falco, P.; Colella, S.; Zambianchi, E. Multiplatform observation of the surface circulation in the Gulf of Naples (Southern Tyrrhenian Sea). Ocean Dyn. 2011, 61, 779–796. [Google Scholar] [CrossRef]
- Cianelli, D.; D’Alelio, D.; Uttieri, M.; Sarno, D.; Zingone, A.; Zambianchi, E.; Ribera d’Alcalà, M. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci. Rep. 2017, 7, 15868. [Google Scholar] [CrossRef] [PubMed]
- Kokoszka, F.; Saviano, S.; Botte, V.; Iudicone, D.; Zambianchi, E.; Cianelli, D. Gulf of Naples Advanced Model (GNAM): A Multiannual Comparison with Coastal HF Radar Data and Hydrological Measurements in a Coastal Tyrrhenian Basin. J. Mar. Sci. Eng. 2022, 10, 1044. [Google Scholar] [CrossRef]
- Iermano, I.; Moore, A.M.; Zambianchi, E. Impacts of a 4-dimensional variational data assimilation in a coastal ocean model of southern Tyrrhenian Sea. J. Mar. Syst. 2016, 154, 157–171. [Google Scholar] [CrossRef]
- Saviano, S.; Cianelli, D.; Zambianchi, E.; Conversano, F.; Uttieri, M. An Integrated Reconstruction of the Multiannual Wave Pattern in the Gulf of Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea). J. Mar. Sci. Eng. 2020, 8, 372. [Google Scholar] [CrossRef]
- Saviano, S.; Biancardi, A.A.; Uttieri, M.; Zambianchi, E.; Cusati, L.A.; Pedroncini, A.; Contento, G.; Cianelli, D. Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model. Remote Sens. 2022, 14, 1696. [Google Scholar] [CrossRef]
- Saviano, S.; Esposito, G.; Di Lemma, R.; de Ruggiero, P.; Zambianchi, E.; Pierini, S.; Falco, P.; Buonocore, B.; Cianelli, D.; Uttieri, M. Wind Direction Data from a Coastal HF Radar System in the Gulf of Naples (Central Mediterranean Sea). Remote Sens. 2021, 13, 1333. [Google Scholar] [CrossRef]
- Menna, M.; Mercatini, A.; Uttieri, M.; Buonocore, B.; Zambianchi, E. Wintertime transport processes in the Gulf of Naples investigated by HF radar measurements of surface currents. II Nuovo Cim. C 2007, 30, 605–622. [Google Scholar]
- Prati, M.V.; Costagliola, M.A.; Quaranta, F.; Murena, F. Assessment of ambient air quality in the port of Naples. J. Air Waste Manag. Assoc. 2015, 65, 970–979. [Google Scholar] [CrossRef]
- Montuori, A.; de Ruggiero, P.; Migliaccio, M.; Pierini, S.; Spezie, G. X-band COSMO- SkyMedc wind field retrieval, with application to coastal circulation modeling. Ocean Sci. 2013, 9, 121–132. [Google Scholar] [CrossRef]
- de Ruggiero, P. A high-resolution ocean circulation model of the Gulf of Naples and adjacent areas. II Nuovo Cim. C 2013, 36, 143–150. [Google Scholar]
- Hatzaki, M.; Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Rudeva, I. Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. J. Clim. 2014, 27, 9272–9289. [Google Scholar] [CrossRef]
- de Ruggiero, P.; Esposito, G.; Napolitano, E.; Iacono, R.; Pierini, S.; Zambianchi, E. Modelling the marine circulation of the Campania coastal system (Tyrrhenian Sea) for the year 2016: Analysis of the dynamics. J. Mar. Syst. 2020, 210, 103388. [Google Scholar] [CrossRef]
- Castagno, P.; de Ruggiero, P.; Pierini, S.; Zambianchi, E.; De Alteris, A.; De Stefano, M.; Budillon, G. Hydrographic and dynamical characterisation of the Bagnoli-Coroglio Bay (Gulf of Naples, Tyrrhenian Sea). Chem. Ecol. 2020, 36, 598–618. [Google Scholar] [CrossRef]
- De Maio, A.; Moretti, M.; Sansone, E.; Spezie, G.; Vultaggio, M. Outline of marine currents in the Bay of Naples and some considerations on pollutant transport. II Nuovo Cim. C 1985, 8, 955–969. [Google Scholar] [CrossRef]
- Cianelli, D.; Uttieri, M.; Buonocore, B.; Falco, P.; Zambardino, G.; Zambianchi, E. Dynamics of a Very Special Mediterranean Coastal Area: The Gulf of Naples, in Mediterranean Ecosystems: Dynamics, Management and Conservation; Williams, G., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 129–150. [Google Scholar]
- Landberg, L.; Giebel, G.; Nielsen, H.A.; Nielsen, T.; Madsen, H. Short-term prediction—An overview. Wind Energy 2003, 6, 273–280. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reder, A.; Raffa, M.; Padulano, R.; Rianna, G.; Mercogliano, P. Characterizing extreme values of precipitation at very high resolution: An experiment over twenty European cities. Weather. Clim. Extrem. 2022, 35, 100407. [Google Scholar] [CrossRef]
- Lipa, B.; Daugharty, M.; Fernandes, M.; Barrick, D.; Alonso-Martinera, A.; Roarty, H.; Dicopoulos, J.; Whelan, C. Developments in compact HF-radar ocean wave measurement. In Advances in Sensors: Reviews; Yurish, S.Y., Ed.; IFSA Publishing: Barcelona, Spain, 2018; Volume 5, pp. 469–495. [Google Scholar]
- Lipa, B.; Barrick, D.; Alonso-Martirena, A.; Fernandes, M.; Ferrer, M.I.; Nyden, B. Brahan project high frequency radar ocean measurements: Currents, winds, waves and their interactions. Remote Sens. 2014, 6, 12094–12117. [Google Scholar] [CrossRef]
- Laws, K.; Paduan, J.D.; Vesecky, J. Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. J. Atmos. Ocean. Technol. 2010, 27, 1029–1043. [Google Scholar] [CrossRef]
- Lipa, B.; Nyden, B.; Barrick, D.; Kohut, J. HF radar sea-echo from shallow water. Sensors 2008, 8, 4611–4635. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Michalakes, J.; Chen, S.; Dudhia, J.; Hart, L.; Klemp, J.; Middlecoff, J.; Skamarock, W. Development of a Next Generation RegionalWeather Research and Forecast Model. Developments in Teracomputing. In Developments in Teracomputing, Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology; Reading, UK, 13–17 November 2000; Zwieflhofer, W., Kreitz, N., Eds.; World Scientific: Singapore, 2001; pp. 269–276. [Google Scholar]
- Sorensen, O.R.; Kofoed-Hansen, H.; Rugbjerg, M.; Sorensen, L.S. A Third Generation Spectral Wave Model Using an Unstructured Finite Volume Technique. In Proceedings of the 29th International Conference of Coastal Engineering, Lisbon, Portugal, 19–24 September 2004. [Google Scholar]
- Technical Report SEAPOL Project. Sistema modellistico ad Elevata risoluzione per l’Analisi storica e la Previsione del moto Ondoso nel mar Ligure POR-FESR (2007–2010)—Asse 1 Innovazione e Competitività, Bando DLTM, Azione 1.2.2 “Ricerca industriale e sviluppo sperimentale a favore delle imprese del Distretto Ligure per le Tecnologie Marine (DLTM), Pos. n° 47”. DHI Italia.
- Ranalli, M.; Lagona, F.; Picone, M.; Zambianchi, E. Segmentation of sea current fields by cylindrical hidden Markov models: A composite likelihood approach. J. R. Stat. Soc. Ser. C 2018, 67, 575–598. [Google Scholar] [CrossRef]
- Hanna, S.; Heinold, D. Development and Application of a Simple Method for Evaluating Air Quality; Technical Report; American Petroleum Institute, Health and Environmental Affairs Department, Pennsylvania State University: State College, PA, USA, 1985. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean Modell. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Shen, W.; Gurgel, K.-W. Wind direction inversion from narrow-beam HF Radar backscatter signals in low and high wind conditions at different radar frequencies. Remote Sens. 2018, 10, 1480. [Google Scholar] [CrossRef]
2010 | MWM vs. ERA5@2km | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trimester | PORT | CAST | SORR | ||||||
CC | RMSE | HH | CC | RMSE | HH | CC | RMSE | HH | |
JFM | 0.71 | 2.68 | 0.44 | 0.67 | 2.88 | 0.44 | 0.73 | 2.83 | 0.38 |
AMJ | 0.64 | 2.14 | 0.51 | 0.62 | 2.26 | 0.5 | 0.67 | 2.43 | 0.49 |
JAS | 0.63 | 1.83 | 0.46 | 0.6 | 1.95 | 0.46 | 0.63 | 2.15 | 0.48 |
OND | 0.71 | 2.6 | 0.41 | 0.66 | 2.98 | 0.45 | 0.76 | 2.65 | 0.35 |
MWM vs. ERA5@2km | |||||||||
---|---|---|---|---|---|---|---|---|---|
2010 | PORT | CAST | SORR | ||||||
ρcc | RMSE | θ | ρcc | RMSE | θ | ρcc | RMSE | θ | |
0.38 | 42.15 | 83.9 | 0.22 | 81.9 | 97.3 | 0.63 | 67.05 | 67.9 |
ISPRA vs. MWM Wind Speed | RC3 | RC5 | RC7 | ||||||
---|---|---|---|---|---|---|---|---|---|
2010 Trimester | CC | RMSE (m/s) | HH | CC | RMSE (m/s) | HH | CC | RMSE (m/s) | HH |
Winter (JFM) | 0.51 | 3.65 | 0.76 | 0.49 | 3.93 | 0.8 | 0.47 | 4.29 | 0.86 |
Spring (AMJ) | 0.5 | 2.21 | 0.58 | 0.49 | 2.35 | 0.6 | 0.47 | 2.54 | 0.64 |
Summer (JAS) | 0.47 | 2.12 | 0.61 | 0.44 | 2.26 | 0.64 | 0.4 | 2.46 | 0.68 |
Autumn (OND) | 0.62 | 3.3 | 0.63 | 0.61 | 3.55 | 0.67 | 0.59 | 3.87 | 0.71 |
MWM vs. ISPRA | |||
---|---|---|---|
PORT | |||
ρcc | RMSE | θ | |
2010 | 0.41 | 41.6 | 58 |
2010 (U > 5 m/s) | 0.67 | 33.3 | 32 |
2010 | RC3 | |||||
---|---|---|---|---|---|---|
HF vs. ISPRA | HF vs. MWM | |||||
Event | ρcc | θ (°) | RMSE (°) | ρcc | θ (°) | RMSE (°) |
Jan_1_3 | 0.64 | 36.3 | 47.3 | 0.52 | 21.3 | 36.9 |
Feb_5_7 | 0.87 | −7.9 | 431 | 0.93 | −10.4 | 39.8 |
Apr_1_6 | 0.82 | 16.1 | 58.28 | 0.74 | −3.15 | 42.8 |
Apr_19_21 | 0.78 | 20.9 | 43.9 | 0.96 | −10 | 35.7 |
May_5_8 | 0.68 | −10.9 | 54.5 | 0.61 | −28.8 | 59.9 |
May_13_18 | 0.61 | 40.7 | 57.4 | 0.36 | 23.9 | 35.4 |
Aug_28_30 | 0.49 | −16 | 41.8 | 0.25 | −47.7 | 56.8 |
Sep_25_29 | 0.66 | 16 | 48.4 | 0.39 | 5.4 | 37.3 |
Nov_18_23 | 0.69 | −26 | 43.7 | 0.64 | −44.1 | 56.8 |
Dic_1_5 | 0.84 | −11.1 | 48.8 | 0.77 | −26.9 | 48.5 |
Dic_23_26 | 0.69 | −32.6 | 48.2 | 0.56 | −46.6 | 56.2 |
Mean | 0.71 | 2.33 | 48.7 | 0.61 | −15.2 | 46.01 |
RC5 | ||||||
Jan_1_3 | 0.69 | 23.65 | 43.23 | 0.57 | 9.1 | 35.14 |
Feb_5_7 | 0.91 | −3.83 | 35.77 | 0.89 | −6.66 | 37.77 |
Apr_1_6 | 0.8 | 24.53 | 58.81 | 0.72 | 4.24 | 39.27 |
Apr_19_21 | 0.79 | 7.56 | 51.27 | 0.94 | −22.7 | 48.73 |
May_5_8 | 0.55 | −28.4 | 54.58 | 0.54 | −46 | 62.23 |
May_13_18 | 0.56 | 34.39 | 57.09 | 0.46 | −46.5 | 28.35 |
Aug_28_30 | 0.58 | −6.57 | 35.54 | 0.33 | 14.3 | 51.79 |
Sep_25_29 | 0.59 | 26.1 | 46.88 | 0.35 | 16.37 | 28.68 |
Nov_18_23 | 0.71 | −29.5 | 41.65 | 0.67 | −47.2 | 55.32 |
Dic_1_5 | 0.79 | −19.7 | 40.61 | 0.65 | −37.1 | 44.37 |
Dic_23_26 | 0.86 | −31.5 | 44.74 | 0.8 | −42.7 | 52.58 |
Mean | 0.71 | −0.36 | 46.4 | 0.63 | −18.6 | 44.02 |
RC7 | ||||||
Jan_1_3 | 0.66 | −21.6 | 46.5 | 0.73 | −37.8 | 51.7 |
Feb_5_7 | 0.88 | −17.3 | 34.2 | 0.9 | −22.2 | 39.8 |
Apr_1_6 | 0.82 | −2.55 | 48.53 | 0.7 | −20.5 | 32.6 |
Apr_19_21 | 0.8 | 11.85 | 46.83 | 0.94 | −22.8 | 45.07 |
May_5_8 | 0.63 | −43.7 | 52.22 | 0.67 | −62.4 | 67.7 |
May_13_18 | 0.7 | −17.3 | 49.5 | 0.27 | −41.4 | 31.2 |
Aug_28_30 | 0.81 | −16.6 | 39.1 | 0.56 | −38.4 | 49.3 |
Sep_25_29 | 0.89 | −5.45 | 38.17 | 0.44 | −19.4 | 28.3 |
Nov_18_23 | 0.85 | −31.5 | 36.53 | 0.76 | −51.9 | 56.2 |
Dic_1_5 | 0.76 | −29.3 | 34.55 | 0.69 | −48.7 | 47.9 |
Dic_23_26 | 0.81 | −28.7 | 35.05 | 0.82 | −41.9 | 46.65 |
Mean | 0.78 | −18.4 | 41.9 | 0.68 | −37.1 | 45.13 |
Comparison Event 4–8 December 2008 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
HFr-ISPRA | 109 | −0.04 | 48.85 | 71 | 28 | 0.74 | 50.88 | 47 |
HFr-MWM | 109 | 0.13 | 47.96 | 74.01 | 28 | 0.84 | 61.9 | 56.47 |
RC5 | ||||||||
HFr-ISPRA | 109 | −0.18 | 39.65 | 75 | 28 | 0.69 | 49.7 | 47 |
HFr-MWM | 109 | 0 | 53.99 | 71.23 | 28 | 0.77 | 65.4 | 62.43 |
RC7 | ||||||||
HFr-ISPRA | 109 | −0.59 | 34.85 | 62 | 28 | 0.73 | 38.99 | 36 |
HFr-MWM | 109 | −0.52 | 55.04 | 70.17 | 28 | 0.84 | 58.91 | 57.99 |
Comparison Event 4–8 December 2008 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
CAST-MWM | 109 | −0.65 | 49.98 | 77.52 | 28 | 0.64 | 71.14 | 73.17 |
SORR-MWM | 109 | 0.6 | 23.87 | 45.82 | 28 | −0.38 | 23.45 | 19.68 |
RC5 | ||||||||
CAST-MWM | 109 | −0.59 | 47.37 | 59.11 | 28 | 0.30 | 60.5 | 61.89 |
SORR-MWM | 109 | −0.9 | 32.03 | 41.98 | 28 | −0.67 | 24.7 | 18.99 |
RC7 | ||||||||
CAST-MWM | 109 | 0.58 | 45.52 | 61.32 | 28 | 0.05 | 52.37 | 17.37 |
SORR-MWM | 109 | −0.83 | 31.82 | 46.29 | 28 | −0.7 | 28.1 | 26.12 |
Comparison Event 5–8 May 2010 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
HFr-ISPRA | 96 | 0.49 | 55.7 | 61 | 39 | 0.68 | 54.5 | 50 |
HFr-MWM | 96 | 0.31 | 63.5 | 69.04 | 39 | 0.61 | 59.9 | 57.93 |
RC5 | ||||||||
HFr-ISPRA | 96 | 0.44 | 53.4 | 60 | 39 | 0.55 | 54.6 | 49 |
HFr-MWM | 96 | 0.33 | 63.9 | 65.9 | 39 | 0.54 | 62.2 | 58.48 |
RC7 | ||||||||
HFr-ISPRA | 96 | 0.39 | 52.7 | 61 | 39 | 0.63 | 52.2 | 47 |
HFr-MWM | 96 | 0.41 | 67.5 | 70.98 | 39 | 0.67 | 67.7 | 63.65 |
Comparison Event 5–8 May 2010 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
CAST-MWM | 96 | −0.08 | 66.3 | 72.45 | 39 | 0.31 | 62.8 | 55.4 |
SORR-MWM | 96 | −0.32 | 34.7 | 81.02 | 39 | −0.43 | 21.9 | 43.75 |
RC5 | ||||||||
CAST-MWM | 96 | 0.05 | 55.02 | 65.73 | 39 | 0.35 | 53 | 49.07 |
SORR-MWM | 96 | −0.36 | 22.7 | 56.2 | 39 | −0.58 | 26.7 | 29.08 |
RC7 | ||||||||
CAST-MWM | 96 | −0.22 | 30.5 | 82.86 | 39 | −0.41 | 44.4 | 68.78 |
SORR-MWM | 96 | −0.36 | 26.2 | 50.58 | 39 | −0.54 | 24.2 | 28.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saviano, S.; Biancardi, A.A.; Kokoszka, F.; Uttieri, M.; Zambianchi, E.; Cusati, L.A.; Pedroncini, A.; Cianelli, D. HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network. Remote Sens. 2023, 15, 2991. https://doi.org/10.3390/rs15122991
Saviano S, Biancardi AA, Kokoszka F, Uttieri M, Zambianchi E, Cusati LA, Pedroncini A, Cianelli D. HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network. Remote Sensing. 2023; 15(12):2991. https://doi.org/10.3390/rs15122991
Chicago/Turabian StyleSaviano, Simona, Anastasia Angela Biancardi, Florian Kokoszka, Marco Uttieri, Enrico Zambianchi, Luis Alberto Cusati, Andrea Pedroncini, and Daniela Cianelli. 2023. "HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network" Remote Sensing 15, no. 12: 2991. https://doi.org/10.3390/rs15122991
APA StyleSaviano, S., Biancardi, A. A., Kokoszka, F., Uttieri, M., Zambianchi, E., Cusati, L. A., Pedroncini, A., & Cianelli, D. (2023). HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network. Remote Sensing, 15(12), 2991. https://doi.org/10.3390/rs15122991