Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. PIES OBP Measurements
2.2. GRACE-FO Mascon Solutions
2.3. Validation of GRACE-FO’s Accuracy
2.4. Calculation of Abyssal Volume Transport
3. Results and Discussion
3.1. Comparison of OBP between GRACE-FO and PIES
3.2. Application to Transport Monitoring
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Shang, P.; Su, X.; Luo, Z. Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry. Remote Sens. 2022, 14, 4442. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; A, G.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, S.; Liu, S.; Leng, G.; Peng, J.; Huang, Q.; Li, P. GRACE-Based Terrestrial Water Storage in Northwest China: Changes and Causes. Remote Sens. 2018, 10, 1163. [Google Scholar] [CrossRef]
- Willis, J.K.; Chambers, D.P.; Nerem, R.S. Assessing the globally averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res. 2008, 113, C06015. [Google Scholar] [CrossRef]
- Chambers, D.P.; Cazenave, A.; Champollion, N.; Dieng, H.; Llovel, W.; Forsberg, R.; von Schuckmann, K.; Wada, Y. Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surv. Geophys. 2016, 38, 309–327. [Google Scholar] [CrossRef]
- Poropat, L.; Dobslaw, H.; Zhang, L.; Macrander, A.; Boebel, O.; Thomas, M. Time Variations in Ocean Bottom Pressure from a Few Hours to Many Years: In Situ Data, Numerical Models, and GRACE Satellite Gravimetry. J. Geophys. Res. Ocean. 2018, 123, 5612–5623. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, X.-H.; Nakamura, H.; Park, J.-H.; Jeon, C.; Zhao, R.; Nishina, A.; Zhang, C.; Na, H.; Zhu, Z.-N.; et al. Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea. Acta Oceanol. Sin. 2020, 39, 91–106. [Google Scholar] [CrossRef]
- Kanzow, T. Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns. J. Geophys. Res. 2005, 110, C09001. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Wahr, J.M.; Jayne, S.R.; Bryan, F.O. A method of inferring changes in deep ocean currents from satellite measurements of time-variable gravity. J. Geophys. Res. Ocean. 2002, 107, 3218. [Google Scholar] [CrossRef]
- Ponte, R.M.; Quinn, K.J.; Wunsch, C.; Heimbach, P. A comparison of model and GRACE estimates of the large-scale seasonal cycle in ocean bottom pressure. Geophys. Res. Lett. 2007, 34, L09603. [Google Scholar] [CrossRef]
- Morison, J.; Wahr, J.; Kwok, R.; Peralta-Ferriz, C. Recent trends in Arctic Ocean mass distribution revealed by GRACE. Geophys. Res. Lett. 2007, 34, L07602. [Google Scholar] [CrossRef]
- Chambers, D.P.; Willis, J.K. A Global Evaluation of Ocean Bottom Pressure from GRACE, OMCT, and Steric-Corrected Altimetry. J. Atmos. Ocean. Technol. 2010, 27, 1395–1402. [Google Scholar] [CrossRef]
- Peralta-Ferriz, C.; Morison, J.H.; Wallace, J.M.; Bonin, J.A.; Zhang, J. Arctic Ocean circulation patterns revealed by GRACE. J. Clim. 2014, 27, 1445–1468. [Google Scholar] [CrossRef]
- Rietbroek, R.; LeGrand, P.; Wouters, B.; Lemoine, J.M.; Ramillien, G.; Hughes, C. Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region. Geophys. Res. Lett. 2006, 33, L21601. [Google Scholar] [CrossRef]
- Ponte, R.M.; Quinn, K.J. Bottom pressure changes around Antarctica and wind-driven meridional flows. Geophys. Res. Lett. 2009, 36, L13604. [Google Scholar] [CrossRef]
- Volkov, D.L.; Landerer, F.W. Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J. Geophys. Res. Ocean. 2013, 118, 6451–6460. [Google Scholar] [CrossRef]
- Munekane, H. Ocean mass variations from GRACE and tsunami gauges. J. Geophys. Res. 2007, 112, B07403. [Google Scholar] [CrossRef]
- Park, J.-H.; Watts, D.R.; Donohue, K.A.; Jayne, S.R. A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio Extension. Geophys. Res. Lett. 2008, 35, L17601. [Google Scholar] [CrossRef]
- Boening, C.; Lee, T.; Zlotnicki, V. A record-high ocean bottom pressure in the South Pacific observed by GRACE. Geophys. Res. Lett. 2011, 38, L04602. [Google Scholar] [CrossRef]
- Johnson, G.C.; Chambers, D.P. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. J. Geophys. Res. Ocean. 2013, 118, 4228–4240. [Google Scholar] [CrossRef]
- Cheng, X.; Ou, N.; Chen, J.; Huang, R.X. On the seasonal variations of ocean bottom pressure in the world oceans. Geosci. Lett. 2021, 8, 29. [Google Scholar] [CrossRef]
- Quinn, K.J.; Ponte, R.M. Estimating high frequency ocean bottom pressure variability. Geophys. Res. Lett. 2011, 38, L08611. [Google Scholar] [CrossRef]
- Köhl, A.; Siegismund, F.; Stammer, D. Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates. J. Geophys. Res. Ocean. 2012, 117, C04032. [Google Scholar] [CrossRef]
- Makowski, J.K.; Chambers, D.P.; Bonin, J.A. Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean. J. Geophys. Res. Ocean. 2015, 120, 4245–4259. [Google Scholar] [CrossRef]
- Peralta-Ferriz, C.; Woodgate, R.A. The Dominant Role of the East Siberian Sea in Driving the Oceanic Flow through the Bering Strait—Conclusions from GRACE Ocean Mass Satellite Data and In Situ Mooring Observations between 2002 and 2016. Geophys. Res. Lett. 2017, 44, 11,472–11,481. [Google Scholar] [CrossRef]
- Koelling, J.; Send, U.; Lankhorst, M. Decadal Strengthening of Interior Flow of North Atlantic Deep Water Observed by GRACE Satellites. J. Geophys. Res. Ocean. 2020, 125, e2020JC016217. [Google Scholar] [CrossRef]
- Zhao, R.; Zhu, X.-H.; Park, J.-H. Near 5-Day Nonisostatic Response to Atmospheric Surface Pressure and Coastal-Trapped Waves Observed in the Northern South China Sea. J. Phys. Oceanogr. 2017, 47, 2291–2303. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, X.-H.; Zhao, R. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 132, 6–15. [Google Scholar] [CrossRef]
- Yuan, D. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol. Sin. 2002, 2, 187–202. [Google Scholar]
- Gan, J.; Liu, Z.; Hui, C.R. A three-layer alternating spinning circulation in the South China Sea. J. Phys. Oceanogr. 2016, 46, 2309–2315. [Google Scholar] [CrossRef]
- Cai, Z.; Gan, J.; Liu, Z.; Hui, C.R.; Li, J. Progress on the formation dynamics of the layered circulation in the South China Sea. Prog. Oceanogr. 2020, 181, 102246. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, J.; Wang, Y.; Li, S.; Xu, T.; Wei, Z.; Qu, T. Overview of the multi-layer circulation in the South China Sea. Prog. Oceanogr. 2019, 175, 171–182. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Cai, S.; Shang, X.; Peng, S.; Shu, Y.; Xiao, J.; Xie, X.; Zhang, Z.; Liu, Z. Advances in research of the mid-deep South China Sea circulation. Sci. China Earth Sci. 2019, 62, 1992–2004. [Google Scholar] [CrossRef]
- Zhao, R.; Zhu, X.-H.; Zhang, C.; Zheng, H.; Zhu, Z.-N.; Ren, Q.; Liu, Y.; Nan, F.; Yu, F. Summer anticyclonic eddies carrying Kuroshio waters observed by a large CPIES array west of the Luzon Strait. J. Phys. Oceanogr. 2023, 53, 341–359. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, X.-H.; Chen, J.; Wang, M.; Zhao, R.; Zhang, C.; Zhu, Z.-N.; Ren, Q.; Liu, Y.; Nan, F. Observation of bottom-trapped topographic Rossby waves to the west of the Luzon Strait, South China Sea. J. Phys. Oceanogr. 2022, 52, 2853–2872. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, X.-H.; Zhang, C.; Zhao, R.; Zhu, Z.-N.; Ren, Q.; Liu, Y.; Nan, F.; Yu, F. Observation of Abyssal Circulation to the West of the Luzon Strait, South China Sea. J. Phys. Oceanogr. 2022, 52, 2091–2109. [Google Scholar] [CrossRef]
- Kennelly, M.; Tracey, K.; Watts, D.R. Inverted Echo Sounder Data Processing Manual; Graduate School of Oceanography, University of Rhode Island: Narragansett, RI, USA, 2007. [Google Scholar]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Loomis, B.D.; Luthcke, S.B.; Sabaka, T.J. Regularization and error characterization of GRACE mascons. J. Geod. 2019, 93, 1381–1398. [Google Scholar] [CrossRef]
- Bingham, R.J.; Hughes, C.W. Determining North Atlantic meridional transport variability from pressure on the western boundary: A model investigation. J. Geophys. Res. 2008, 113, C09008. [Google Scholar] [CrossRef]
- Landerer, F.W.; Wiese, D.N.; Bentel, K.; Boening, C.; Watkins, M.M. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys. Res. Lett. 2015, 42, 8114–8121. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, J.; Xu, T.; Li, S.; Wang, Y.; Wei, Z. Weakening Trend of Luzon Strait Overflow Transport in the Past Two Decades. Geophys. Res. Lett. 2022, 49, e2021GL097395. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, J.; Li, S.; Xu, T.; Huang, R.X.; Nie, X.; Pan, H.; Wang, Y.; Fang, Y.; Wei, Z. Decadal Weakening of Abyssal South China Sea Circulation. Geophys. Res. Lett. 2022, 49, e2022GL100582. [Google Scholar] [CrossRef]
- Bentel, K.; Landerer, F.W.; Boening, C. Monitoring Atlantic overturning circulation and transport variability with GRACE-type ocean bottom pressure observations—A sensitivity study. Ocean. Sci. 2015, 11, 953–963. [Google Scholar] [CrossRef]
- Mu, D.; Xu, T.; Xu, G. Detecting coastal ocean mass variations with GRACE mascons. Geophys. J. Int. 2019, 217, 2071–2080. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Zhao, R.; Guo, X.; Long, Y.; Ma, Y.-L.; Fan, X. A long-term volume transport time series estimated by combining in situ observation and satellite altimeter data in the northern South China Sea. J. Oceanogr. 2015, 71, 663–673. [Google Scholar] [CrossRef]
Institution | JPL | CSR | GSFC |
---|---|---|---|
Version | RL06 2.0 | RL06 2.0 | RL06 1.0 |
Original Resolution | 3° × 3° | 1° × 1° | 1° × 1° |
Grid size | 0.5° × 0.5° | 0.25° × 0.25° | 0.5° × 0.5° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zheng, H.; Zhu, X.-H.; Zhao, R.; Wang, M.; Chen, J.; Ma, Y.; Nan, F.; Yu, F. Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea. Remote Sens. 2023, 15, 2804. https://doi.org/10.3390/rs15112804
Wang X, Zheng H, Zhu X-H, Zhao R, Wang M, Chen J, Ma Y, Nan F, Yu F. Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea. Remote Sensing. 2023; 15(11):2804. https://doi.org/10.3390/rs15112804
Chicago/Turabian StyleWang, Xuecheng, Hua Zheng, Xiao-Hua Zhu, Ruixiang Zhao, Min Wang, Juntian Chen, Yunlong Ma, Feng Nan, and Fei Yu. 2023. "Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea" Remote Sensing 15, no. 11: 2804. https://doi.org/10.3390/rs15112804
APA StyleWang, X., Zheng, H., Zhu, X. -H., Zhao, R., Wang, M., Chen, J., Ma, Y., Nan, F., & Yu, F. (2023). Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea. Remote Sensing, 15(11), 2804. https://doi.org/10.3390/rs15112804