An Improved Innovation Robust Outliers Detection Method for Airborne Array Position and Orientation Measurement System
Abstract
:1. Introduction
2. Composition of Array POS System
3. Adaptive Outlier Fault-Tolerant Combined Estimation Model of Array POS System
3.1. Mathematical Model of the System
3.1.1. State Equation Mathematical Expression
3.1.2. Measurement Equation Mathematical Expression
3.2. Assessment and Correction Method of Abnormal Values of Measurement Information Based on Innovation
3.3. Assessment and Correction of Abnormal Values of Inertial Devices Based on Extrapolation Prediction
4. Flight Test and Result Analysis
4.1. Flight Test Condition
4.2. Verification of Assessment and Correction Method for Abnormal Values of Measurement Information Based on Innovation
4.2.1. Simulation Condition and Initialization
4.2.2. Simulation Results and Analysis
4.3. Verification Assessment and Correction of Abnormal Values from Inertial Devices Based on Extrapolation Prediction
4.3.1. Simulation Condition and Initialization
4.3.2. Simulation Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qu, C.; Li, J.; Bao, J.; Zhu, Z. Design and Development of Array POS for Airborne Remote Sensing Motion Compensation. Remote Sens. 2022, 14, 3420. [Google Scholar] [CrossRef]
- Qu, C.; Li, J. A novel relative motion measurement method based on distributed POS relative parameters matching transfer alignment. Measurement 2022, 202, 111890. [Google Scholar] [CrossRef]
- Wang, B.; Ye, W.; Liu, Y. Enhanced Disturbance Suppression Method Based on Nonlinear H∞ Filtering for Distributed POS in Aerial Earth Observation Imaging Application. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5211509. [Google Scholar] [CrossRef]
- Wang, B.; Ye, W.; Liu, Y. Variational Bayesian cubature RTS smoothing for transfer alignment of DPOS. IEEE Sens. J. 2020, 20, 3270–3279. [Google Scholar] [CrossRef]
- Gautam, D.; Lucieer, A.; Malenovský, Z.; Watson, C. Comparison of MEMS-Based and FOG-Based IMUs to Determine Sensor Pose on an Unmanned Aircraft System. J. Surv. Eng. 2017, 143, 04017009. [Google Scholar] [CrossRef]
- Cai, T.; Xu, Q.; Zhou, D.; Gao, S.; Liu, Y.; Huang, J.; Emelyantsev, G.I.; Stepanov, A.P. A Multimode GNSS/MIMU Integrated Orientation and Navigation System. In Proceedings of the 2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Russia, 27–29 May 2019. [Google Scholar]
- Lu, H.; Zhang, H.; Fan, H.; Liu, D.; Wang, J.; Wan, X.; Zhao, L.; Deng, Y.; Zhao, F.; Wang, R. Forest Height Retrieval Using P-band Airborne Multibaseline SAR Data: A Novel Phase Compensation Method. ISPRS J. Photogramm. Remote Sens. 2021, 175, 99–118. [Google Scholar] [CrossRef]
- Mahmoud, R.; Ahmed, E.R. Integration of Multi-Constellation GNSS Precise Point Positioning and MEMS-Based Inertial Systems Using Tightly Coupled Mechanization. Positioning 2015, 6, 81–95. [Google Scholar]
- Zhou, Q.; Zheng, L.; Yu, G.; Li, H.; Zhang, N. A Novel Adaptive Kalman Filter for Euler Angle Based MEMS IMU/ Magnetometer Attitude Estimation. Meas. Sci. Technol. 2020, 32, 045104. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, X.; Li, Y.; Ye, F. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter. Sensors 2017, 17, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Liu, Z.; Zhao, L. Improved robust Kalman filter for state model errors in GNSS-PPP/MEMS-IMU double state integrated navigation. Adv. Space Res. 2021, 67, 3157–3168. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, J. Adaptive Fault-tolerant Federated Filter with Fault Detection Method Based on Combination of LSTM and Chi-square Test. In Proceedings of the 40th Chinese Control Conference, Shanghai, China, 26–28 July 2021; pp. 3059–3064. [Google Scholar]
- Zhang, H.; Dong, L.; Zhang, G. Application of hybrid chi-square test method in fault detection of integrated navigation system. J. Chin. Inert. Technol. 2016, 24, 696–700. [Google Scholar]
- Li, S.; Zhang, M.; Ji, Y.; Zhang, Z.; Cao, R.; Chen, B.; Li, H.; Yin, Y. Agricultural Machinery GNSS/IMU Integrated Navigation Based on Fuzzy Adaptive Finite Impulse Response Kalman Filtering Algorithm. Comput. Electron. Agric. 2021, 191, 106524. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Z. A New Method Based on Dual-State Chi-Square Fault-Tolerant to Inertial/Acoustic Range Integrated Navigation System with Single Transponder. In Proceedings of the 2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Russia, 27–29 May 2019. [Google Scholar]
- Zhang, C.; Zhao, X.; Pang, C.; Zhang, L.; Feng, B. The Influence of Satellite Configuration and Fault Duration Time on the Performance of Fault Detection in GNSS/INS Integration. Sensors 2019, 19, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Yu, Z. IMU-based Automated Vehicle Body Sideslip Angle and Attitude Estimation Aided by GNSS using Parallel Adaptive Kalman Filters. IEEE Trans. Veh. Technol. 2020, 69, 10668–10680. [Google Scholar] [CrossRef]
- Cong, N.; Wang, W.; Zhu, Z. Design of improved fault-tolerant filtering algorithm based on multi-source information fusion. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 918–923. [Google Scholar]
- Zhang, H.; Xiao, Y.; Yang, C.X. Integrated navigation system based on fauIt detection using double state Chi-square test. Acta Aeronaut. Astronaut. Sin. 2020, 41 (Suppl. S2), 724271. [Google Scholar]
- Gong, X.L.; Ding, X.S. Adaptive CDKF Based on Gradient Descent with Momentum and its Application to POS. IEEE Sens. J. 2021, 21, 16201–16212. [Google Scholar] [CrossRef]
- Liang, X.; Bo, Y.; Yang, X.; Yuan, D.; Wang, X.; Chang, H. A Redundant Fused MIMU Attitude System Algorithm Based on Two-stage Data Fusion of MEMS Gyro Clusters Array. Measurement 2021, 184, 109993. [Google Scholar]
- Ye, W.; Liu, Z.; Li, C.; Fang, J. Enhanced Kalman Filter using Noisy Input Gaussian Process Regression for Bridging GNSS Outages in a POS. J. Navig. 2018, 71, 565–584. [Google Scholar] [CrossRef]
- He, Y.J.; Lu, X.D.; Lv, C.H. Calculation and correction method for MEMS strap-down Inertial Navigation System. Comput. Meas. Control 2010, 18, 1364–1366. [Google Scholar]
- Ren, C.; Liu, Q.; Fu, T. A Novel Self-Calibration Method for MIMU. IEEE Sens. J. 2015, 15, 5416–5422. [Google Scholar] [CrossRef]
Parameters | Index |
---|---|
sampling frequency of IMU | 200 Hz |
Heading angle accuracy (Post-Processing) | 10−2 |
gyro drift | 5°/hour |
Accelerometers random | 50 μg |
Parameters | Index |
---|---|
The initial estimation error covariance matrix | |
Process noise matrix | |
Measurement noise matrix of GNSS | |
Measurement noise matrix of magnetometer | |
Initial information distribution parameters |
Accuracy (STD) | Left Node | Right Node | ||
---|---|---|---|---|
Proposed Method | Traditional FKF | Proposed Method | Traditional FKF | |
Latitude (m) | 0.0869 | 0.1838 | 0.0609 | 0.1191 |
Longitude (m) | 0.3653 | 0.3781 | 0.3075 | 0.3308 |
Height (m) | 0.1303 | 2.2189 | 0.1379 | 2.3347 |
Position average (m) | 0.1942 | 0.9269 | 0.1688 | 0.9282 |
East velocity (m/s) | 0.0593 | 0.1346 | 0.0513 | 0.0830 |
North velocity (m/s) | 0.0435 | 0.2587 | 0.0457 | 0.1233 |
Up velocity (m/s) | 0.0836 | 0.7252 | 0.0426 | 0.8225 |
Velocity average (m/s) | 0.0621 | 0.3728 | 0.0465 | 0.3429 |
Heading angle (°) | 0.1224 | 0.6992 | 0.1202 | 0.7630 |
Pitch angle (°) | 0.1652 | 0.5071 | 0.1277 | 0.3111 |
Roll angle (°) | 0.0497 | 0.6120 | 0.0766 | 0.5784 |
Horizontal attitude angle average (°) | 0.1075 | 0.5600 | 0.1022 | 0.4448 |
Accuracy (STD) | Left Node | Right Node | ||
---|---|---|---|---|
Proposed Method | Traditional Method | Proposed Method | Traditional Method | |
Latitude (m) | 0.0867 | 2.0041 | 0.0626 | 1.9881 |
Longitude (m) | 0.3587 | 0.3783 | 0.3047 | 0.3196 |
Height (m) | 0.0840 | 0.0882 | 0.1049 | 0.1106 |
Position average (m) | 0.1765 | 0.8235 | 0.1574 | 0.8061 |
East velocity (m/s) | 0.0589 | 0.0592 | 0.0511 | 0.0515 |
North velocity (m/s) | 0.0444 | 1.0331 | 0.0455 | 1.0297 |
Up velocity (m/s) | 0.0730 | 0.0732 | 0.0402 | 0.0402 |
Velocity average (m/s) | 0.0588 | 0.3885 | 0.0456 | 0.3738 |
Heading angle (°) | 0.1168 | 0.1170 | 0.1173 | 0.1190 |
Pitch angle (°) | 0.1506 | 0.1626 | 0.1169 | 0.1283 |
Roll angle (°) | 0.0479 | 0.2856 | 0.0766 | 0.3530 |
Horizontal attitude angle average (°) | 0.0992 | 0.2241 | 0.0968 | 0.2407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junfang, B.; Jianli, L.; Mengdi, W.; Chunyu, Q. An Improved Innovation Robust Outliers Detection Method for Airborne Array Position and Orientation Measurement System. Remote Sens. 2023, 15, 26. https://doi.org/10.3390/rs15010026
Junfang B, Jianli L, Mengdi W, Chunyu Q. An Improved Innovation Robust Outliers Detection Method for Airborne Array Position and Orientation Measurement System. Remote Sensing. 2023; 15(1):26. https://doi.org/10.3390/rs15010026
Chicago/Turabian StyleJunfang, Bao, Li Jianli, Wei Mengdi, and Qu Chunyu. 2023. "An Improved Innovation Robust Outliers Detection Method for Airborne Array Position and Orientation Measurement System" Remote Sensing 15, no. 1: 26. https://doi.org/10.3390/rs15010026
APA StyleJunfang, B., Jianli, L., Mengdi, W., & Chunyu, Q. (2023). An Improved Innovation Robust Outliers Detection Method for Airborne Array Position and Orientation Measurement System. Remote Sensing, 15(1), 26. https://doi.org/10.3390/rs15010026