Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature
Abstract
:1. Introduction
2. Expected Tidal Mixing Frequencies in Sea Surface Temperature
3. Sea Surface Temperature Data and Method
4. Results
5. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryden, H.L.; Imawaki, S. Ocean transport of heat. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean; Siedler, G., Church, J., Gould, J., Eds.; This Is Volume 77 in the International Geophysics Series; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Sprintall, J.; Gordon, A.L.; Koch-Larrouy, A.; Lee, T.; Potemra, J.T.; Pujiana, K.; Wijffels, S.E. The Indonesian Seas and Their Role in the Coupled Ocean–climate System. Nat. Geosci. 2014, 7, 487–492. [Google Scholar] [CrossRef]
- Lee, S.-K.; Park, W.; Baringer, M.O.; Gordon, A.L.; Huber, B.; Liu, Y. Pacific Origin of the Abrupt Increase in Indian Ocean Heat Content during the Warming Hiatus. Nat. Geosci. 2015, 8, 445–449. [Google Scholar] [CrossRef]
- Barsugli, J.J.; Sardeshmukh, P.D. Global Atmospheric Sensitivity to Tropical SST Anomalies Throughout the Indo-Pacific Basin. J. Clim. 2002, 15, 3427–3442. [Google Scholar] [CrossRef]
- Halkides, D.; Lee, T.; Kida, S. Mechanisms Controlling the Seasonal Mixed-Layer Temperature and Salinity of the Indonesian Seas. Ocean. Dyn. 2011, 61, 481–495. [Google Scholar] [CrossRef] [Green Version]
- McBride, J.L.; Haylock, M.R.; Nicholls, N. Relationships between the Maritime Continent Heat Source and the El Niño-Southern Oscillation Phenomenon. J. Clim. 2003, 16, 2905–2914. [Google Scholar] [CrossRef] [Green Version]
- Koch-Larrouy, A.; Lengaigne, M.; Terray, P.; Madec, G.; Masson, S. Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim. Dynam. 2010, 34, 891–904. [Google Scholar] [CrossRef]
- Purwandana, A.; Cuypers, Y.; Bouruet-Aubertot, P.; Nagai, T.; Hibiya, T.; Atmadipoera, A.S. Spatial Structure of Turbulent Mixing Inferred from Historical CTD Datasets in the Indonesian Seas. Prog. Oceanogr. 2020, 184, 102312. [Google Scholar] [CrossRef]
- Ffield, A.; Gordon, A.L. Vertical Mixing in the Indonesian Thermocline. J. Phys. Oceanogr. 1992, 22, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Ffield, A.; Robertson, R. Indonesian Seas Fine-structure Variability. Oceanography 2005, 18, 108–111. [Google Scholar] [CrossRef]
- Ffield, A.; Robertson, R. Temperature fine structure in the Indonesian Seas. J. Geophys. Res. 2008, 113, C09009. [Google Scholar] [CrossRef] [Green Version]
- Robertson, R. Tidal Currents and Mixing at the Instant Mooring Locations. Dyn. Atmos. Ocean. 2010, 50, 331–373. [Google Scholar] [CrossRef]
- Sprintall, J.; Gordon, A.L.; Wijffels, S.E.; Feng, M.; Hu, S.; Koch-Larrouy, A.; Phillips, H.; Nugroho, D.; Napitu, A.; Pujiana, K.; et al. Detecting Change in the Indonesian Seas. Front. Mar. Sci. 2019, 6, 257. [Google Scholar] [CrossRef]
- Purwandana, A.; Cuypers, Y.; Bouruet-Aubertot, P. Observation of Internal Tides, Nonlinear Internal Waves and Mixing in the Lombok Strait, Indonesia. Cont. Shelf Res. 2021, 216, 104358. [Google Scholar] [CrossRef]
- Ffield, A.; Gordon, A.L. Tidal Mixing Signatures in the Indonesian Seas. J. Phys. Oceanogr. 1996, 26, 1924–1937. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D.; Susanto, R.D. Tidal Mixing Signatures in the Indonesian Seas from High-Resolution Sea Surface Temperature Data. Geophys. Res. Lett. 2016, 43, 8115–8123. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.H.; Gregg, M.C.; Ilyas, M. Diapycnal Mixing in the Banda Sea: Results of the First Microstructure Measurements in the Indonesian Throughflow. Geophys. Res. Lett. 1999, 26, 2741–2744. [Google Scholar] [CrossRef]
- Tan, S.; Pratt, L.J.; Yuan, D.; Li, X.; Wang, Z.; Li, Y.; Corvianawatie, C.; Surinati, D.; Sandra, A.; Bayhaqi, A. Hydraulics and mixing of the deep overflow in the LifamatolaPassage of the Indonesian seas. J. Phys. Oceanogr. 2020, 50, 2797–2814. [Google Scholar] [CrossRef]
- Nagai, T.; Hibiya, T.; Syamsudin, F. Direct estimates of turbulent mixing in the Indonesian archipelago and its role in the transformation of the Indonesian throughflow waters. Geophys. Res. Lett. 2021, 48, e2020GL091731. [Google Scholar] [CrossRef]
- Koch-Larrouy, A.; Atmadipoera, A.; van Beek, P.; Madec, G.; Aucan, J.; Lyard, F.; Grelet, J.; Souhaut, M. Estimates of Tidal Mixing in the Indonesian Archipelago from Multidisciplinary Indomix in-Situ Data. Deep. Sea Res. Part I 2015, 106, 136–153. [Google Scholar] [CrossRef]
- Ray, R.D.; Susanto, R.D. A Fortnightly Atmospheric ‘tide’ at Bali Caused by Oceanic Tidal Mixing in Lombok Strait. Geoscience Letters 2019, 6, 6. [Google Scholar] [CrossRef]
- Nugroho, D.; Koch-Larrouy, A.; Gaspar, P.; Lyard, F.; Reffray, G.; Tranchant, B. Modelling Explicit Tides in the Indonesian Seas: An Important Process for Surface Sea Water Properties. Mar. Pollut. Bull. 2018, 131, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Egbert, G.; Erofeeva, S. A Brief Overview of Tides in the Indonesian Seas. Oceanography 2005, 18, 74–79. [Google Scholar] [CrossRef]
- Nagai, T.; Hibiya, T. Internal Tides and Associated Vertical Mixing in the Indonesian Archipelago. J. Geophys. Res. Ocean. 2015, 120, 3373–3390. [Google Scholar] [CrossRef]
- Pugh, D.T.; Woodworth, P.L. Sea Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Qu, T.; Du, Y.; Strachan, J.; Meyers, G.; Slingo, J. Sea Surface Temperature and Its Variability in the Indonesian Region. Oceanography 2005, 18, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Kida, S.; Richards, K.J. Seasonal Sea Surface Temperature Variability in the Indonesian Seas. J. Geophys. Res. Ocean. 2009, 114, C6. [Google Scholar] [CrossRef]
- Susanto, R.; Pan, J.; Devlin, A. Tidal Mixing Signatures in the Hong Kong Coastal Waters from Satellite-Derived Sea Surface Temperature. Remote Sens. 2018, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. Algorithm Theoretical Basis Document: A Multi-Scale, High-Resolution Analysis of Global Sea Surface Temperature; Version 1.3; Jet Propulsion Laboratory: Pasadena, CA, USA, 2013. [Google Scholar]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite Measurements of Sea Surface Temperature through Clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Wentz, F.J. Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather Prediction and Climate Research. Bull. Am. Meteorol. Soc. 2005, 86, 1097–1115. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.; et al. The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1213. [Google Scholar] [CrossRef]
- Donlon, C.; Casey, K.; Robinson, I.; Gentemann, C.; Reynolds, R.; Barton, I.; Arino, O.; Stark, J.; Rayner, N.; LeBorgne, P.; et al. The Godae High-Resolution Sea Surface Temperature Pilot Project. Oceanography 2009, 22, 34–45. [Google Scholar] [CrossRef]
- Remote Sensing Systems. MWIR Optimum Interpolated SST Data Set, Version 5.0; Physical Oceanography DAAC (PO.DAAC), Jet Propulsion Laboratory: Pasadena, CA, USA, 2017. [Google Scholar] [CrossRef]
- Aldrian, E.; Susanto, R.D. Identification of Three Dominant Rainfall Regions Within Indonesia and Their Relationship to Sea Surface Temperature. Int. J. Climatol. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- Kida, S.; Wijffels, S.E. The impact of the Indonesian throughflow and tidal mixing on the summer time sea surface temperature in the western Indonesian seas. J. Geophys. Res. 2012, 117, C09007. [Google Scholar]
- Nagai, T.; Hibiya, T. Combined effects of tidal mixing in narrow straits and the Ekman transport on the sea surface temperature cooling in the southern Indonesian seas. J. Geophys. Res. 2020, 125, e2020JC016314. [Google Scholar] [CrossRef]
- Sprintall, J.; Wijffels, S.E.; Molcard, R.; Jaya, I. Direct Estimates of the Indonesian Throughflow Entering the Indian Ocean: 2004–2006. J. Geophys. Res. C Ocean. 2009, 114, C7. [Google Scholar] [CrossRef]
- Susanto, R.D.; Waworuntu, J.M.; Prayogo, W.; Setianto, A. Moored Observations of Current and Temperature in the Alas Strait: Collected for Submarine Tailing Placement, Used for Calculating the Indonesian Throughflow. Oceanography 2021, 34, 240–248. [Google Scholar] [CrossRef]
- Atmadipoera, A.; Molcard, R.; Madec, G.; Wijffels, S.; Sprintall, J.; Koch-Larrouy, A.; Jaya, I.; Supangat, A. Characteristics and Variability of the Indonesian Throughflow Water at the Outflow Straits. Deep. Sea Res. Part I 2009, 56, 1942–1954. [Google Scholar] [CrossRef]
- Susanto, R.D.; Wei, Z.; Adi, T.R.; Zheng, Q.; Fang, G.; Fan, B.; Supangat, A.; Agustiadi, T.; Li, S.; Trenggono, M.; et al. Oceanography Surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography 2016, 29, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Aiki, H.; Matthews, J.P.; Lamb, K.G. Modeling and Energetics of Tidally Generated Wave Trains in the Lombok Strait: Impact of the Indonesian Throughflow. J. Geophys. Res. 2011, 116, C3. [Google Scholar] [CrossRef] [Green Version]
- Sprintall, J.; Gordon, A.L.; Murtugudde, R.; Susanto, R.D. A semi-annual Indian Ocean forced Kelvin waves observed in the Indonesian Seas, May 1997. J. Geophys. Res. 2000, 105, 17217–17230. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.L.; Huber, B.A.; Metzger, E.J.; Susanto, R.D.; Hurlburt, H.E.; Adi, T.R. South China Sea Throughflow Impact on the Indonesian Throughflow. Geophys. Res. Lett. 2012, 39, 127. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.L.; Sprintall, J.; Van Aken, H.M.; Susanto, R.D.; Wijffels, S.; Molcard, R.; Ffield, A.; Pranowo, W.; Wirasantosa, S. The Indonesian Throughflow during 2004–2006 As Observed by the Instant Program. Dyn. Atmos. Ocean. 2010, 50, 115–128. [Google Scholar] [CrossRef]
- Susanto, R.D.; Ffield, A.; Gordon, A.L.; Adi, T.R. Variability of Indonesian Throughflow Within Makassar Strait, 2004-2009. J. Geophys. Res. Ocean. 2012, 117, C9. [Google Scholar] [CrossRef]
- Liu, Q.-Y.; Feng, M.; Wang, D.; Wijffels, S. Interannual Variability of the Indonesian Throughflow Transport: A Revisit Based on 30 Year Expendable Bathythermograph Data. J. Geophys. Res. Ocean. 2015, 120, 8270–8282. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Zhang, N.; Liu, Q.; Wijffels, S. The Indonesian Throughflow, Its Variability and Centennial Change. Geosci. Lett. 2018, 5, 1–10. [Google Scholar] [CrossRef]
- Horii, T.; Ueki, I.; Ando, K. Coastal Upwelling Events along the Southern Coast of Java during the 2008 Positive Indian Ocean Dipole. J. Oceanogr. 2018, 74, 499–508. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A Dipole Mode in the Tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Susanto, R.D.; Gordon, A.L.; Zheng, Q.N. Upwelling along the coasts of Java and Sumatra sand its relation to ENSO. Geophys. Res. Letters. 2001, 28, 1599–1602. [Google Scholar] [CrossRef]
- Susanto, R.D.; Moore, T.S.; Marra, J. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochem. Geophys. Geosyst. 2006, 7, Q05021. [Google Scholar] [CrossRef]
- Susanto, R.D.; Marra, J. Effect of the 1997/98 El Niño on Chlorophyll a Variability along the Southern Coasts of Java and Sumatra. Oceanography 2005, 18, 124–127. [Google Scholar] [CrossRef]
- Siswanto, E.; Horii, T.; Iskandar, I.; Gaol, J.L.; Setiawan, R.Y.; Susanto, R.D. Impacts of Climate Changes on the Phytoplankton Biomass of the Indonesian Maritime Continent. J. Mar. Syst. 2020, 212, 103451. [Google Scholar] [CrossRef]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled oceanic-atmospheric dynamics in the Indian Ocean during 1997–98. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Susanto, R.D.; Mitnik, L.; Zheng, Q. Ocean Internal Waves Observed in the Lombok Strait. Oceanography 2005, 18, 80–87. [Google Scholar] [CrossRef]
- Liu, B.; D’Sa, E.J. Oceanic Internal Waves in the Sulu–celebes Sea Under Sunglint and Moonglint. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6119–6129. [Google Scholar] [CrossRef]
- Jackson, C.R.; Apel, J.R. An Atlas of Internal Solitary-Like Waves and Their Properties; Global Ocean Associates: Rockville, MD, USA, 2004. [Google Scholar]
- Qu, T.; Song, Y.T. Mindoro Strait and Sibutu Passage Transports Estimated from Satellite Data. Geophys. Res. Lett. 2009, 36, 22. [Google Scholar] [CrossRef]
- Hatayama, T. Transformation of the Indonesian Throughflow Water by Vertical Mixing and Its Relation to Tidally Generated Internal Waves. J. Oceanogr. 2004, 60, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.P.; Aiki, H.; Masuda, S.; Awaji, T.; Ishikawa, Y. Monsoon Regulation of Lombok Strait Internal Waves. J. Geophys. Res. Ocean. 2011, 116, C5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susanto, R.D.; Ray, R.D. Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature. Remote Sens. 2022, 14, 1934. https://doi.org/10.3390/rs14081934
Susanto RD, Ray RD. Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature. Remote Sensing. 2022; 14(8):1934. https://doi.org/10.3390/rs14081934
Chicago/Turabian StyleSusanto, Raden Dwi, and Richard D. Ray. 2022. "Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature" Remote Sensing 14, no. 8: 1934. https://doi.org/10.3390/rs14081934
APA StyleSusanto, R. D., & Ray, R. D. (2022). Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature. Remote Sensing, 14(8), 1934. https://doi.org/10.3390/rs14081934