A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes: A Case Study in Mato Grosso, Brazil
Abstract
:1. Introduction
- Is the differentiation between forest and degraded forest possible by conducting a land cover classification in Mato Grosso?
- Which inferences can be made about the intensity of deforestation and degradation by recording and characterizing changes in forest cover over time?
- How does the recording and characterization of spatial changes in forest cover help to draw conclusions about forest fragmentation?
2. Materials and Methods
2.1. Study Area
- the Amazon: humid tropical rainforest in the North (53% of the state)
- the Cerrado: tropical savanna, which covers the center of the state from East to West (40% of the state)
- the Pantanal: wetland in the Southwest (7% of the state)
2.2. Data
2.3. Preprocessing
2.4. Spectral Mixture Analysis
2.4.1. Spectral Mixture Derivation
- is the fraction of endmember and
- is the number of pure spectra (endmembers).
- Unmodeled portions of the spectrum are expressed as residual error in band .
2.4.2. Decision Tree Classification
2.4.3. Acccuracy Assessment and Plausibility Analysis
2.5. Estimation of Forest Cover Change and Degradation
2.6. Fragmentation Analysis
3. Results
3.1. Overall Classification Performance
3.2. Land Cover Change
3.3. Forest Fragmentation
4. Discussion
4.1. Spectral Mixture Analysis and Fraction Image Classification
4.2. Change Detection
4.3. Forest Fragmentation
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simoes, R.; Picoli, M.C.A.; Camara, G.; Maciel, A.; Santos, L.; Andrade, P.R.; Sánchez, A.; Ferreira, K.; Carvalho, A. Land use and cover maps for Mato Grosso State in Brazil from 2001 to 2017. Sci. Data 2020, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The State of Agricultural Commodity Markets 2018: Agricultural Trade, Climate Change and Food Security; FAO: Roma, Italy, 2018. [Google Scholar]
- Picoli, M.C.A.; Rorato, A.; Leitão, P.; Camara, G.; Maciel, A.; Hostert, P.; Sanches, I.D. Impacts of Public and Private Sector Policies on Soybean and Pasture Expansion in Mato Grosso—Brazil from 2001 to 2017. Land 2020, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Lapola, D.M.; Martinelli, L.A.; Peres, C.A.; Ometto, J.P.H.B.; Ferreira, M.E.; Nobre, C.A.; Aguiar, A.P.D.; Bustamante, M.M.C.; Cardoso, M.F.; Costa, M.H.; et al. Pervasive transition of the Brazilian land-use system. Nat. Clim. Chang. 2014, 4, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Da Cruz, D.C.; Benayas, J.M.R.; Ferreira, G.C.; Santos, S.R.; Schwartz, G. An overview of forest loss and restoration in the Brazilian Amazon. New For. 2021, 52, 1–16. [Google Scholar] [CrossRef] [Green Version]
- IBGE. Produção Agrícola Municipal—PAM: Séries históricas. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?=t=series-historicas (accessed on 10 March 2021).
- Broadbent, E.N.; Asner, G.P.; Keller, M.; Knapp, D.E.; Oliveira, P.J.; Silva, J.N. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 2008, 141, 1745–1757. [Google Scholar] [CrossRef]
- De La Vega-Leinert, A.C.; Huber, C. The Down Side of Cross-Border Integration: The Case of Deforestation in the Brazilian Mato Grosso and Bolivian Santa Cruz Lowlands. Environ. Sci. Policy Sustain. Dev. 2019, 61, 31–44. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Souza, C.; Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Global Chang. Biol. 2020, 26, 2956–2969. [Google Scholar] [CrossRef]
- Nogueira, E.M.; Yanai, A.M.; de Vasconcelos, S.S.; de Alencastro Graça, P.M.L.; Fearnside, P.M. Brazil’s Amazonian protected areas as a bulwark against regional climate change. Reg. Environ. Chang. 2018, 18, 573–579. [Google Scholar] [CrossRef]
- Cochrane, M.A. Fire science for rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef]
- Silvério, D.V.; Brando, P.M.; Bustamante, M.M.C.; Putz, F.E.; Marra, D.M.; Levick, S.R.; Trumbore, S.E. Fire, fragmentation, and windstorms: A recipe for tropical forest degradation. J. Ecol. 2019, 107, 656–667. [Google Scholar] [CrossRef]
- Bustamante, M.M.C.; Roitman, I.; Aide, T.M.; Alencar, A.; Anderson, L.O.; Aragão, L.; Asner, G.P.; Barlow, J.; Berenguer, E.; Chambers, J.; et al. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Chang. Biol. 2016, 22, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Brunet, Y. Impact of forest edge shape on tree stability: A large-eddy simulation study. Forestry 2008, 81, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point. Sci. Adv. 2018, 4, eaat2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWalt, S.J.; Maliakal, S.K.; Denslow, J.S. Changes in vegetation structure and composition along a tropical forest chronosequence: Implications for wildlife. For. Ecol. Manag. 2003, 182, 139–151. [Google Scholar] [CrossRef]
- Laurance, W.F.; Lovejoy, T.E.; Vasconcelos, H.L.; Bruna, E.M.; Didham, R.K.; Stouffer, P.C.; Gascon, C.; Bierregaard, R.O.; Laurance, S.G.; Sampaio, E. Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation. Conserv. Biol. 2002, 16, 605–618. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.W.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E.; et al. Compositional response of Amazon forests to climate change. Global Chang. Biol. 2019, 25, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Achard, F.; Boschetti, L.; Brown, S.; Brady, M.; DeFries, R.; Grassi, G.; Herold, M.; Mollicone, D.; Mora, B.; Pandey, D.; et al. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation; Wageningen University: Wageningen, The Netherlands, 2014. [Google Scholar]
- Souza, C.M.; Siqueira, J.; Sales, M.; Fonseca, A.; Ribeiro, J.; Numata, I.; Cochrane, M.; Barber, C.; Roberts, D.; Barlow, J. Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sens. 2013, 5, 5493–5513. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- Daldegan, G.A.; Roberts, D.A.; Ribeiro, F.d.F. Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sens. Environ. 2019, 232, 111340. [Google Scholar] [CrossRef]
- Torres, D.L.; Turnes, J.N.; Soto Vega, P.J.; Feitosa, R.Q.; Silva, D.E.; Marcato Junior, J.; Almeida, C. Deforestation Detection with Fully Convolutional Networks in the Amazon Forest from Landsat-8 and Sentinel-2 Images. Remote Sens. 2021, 13, 5084. [Google Scholar] [CrossRef]
- Matosak, B.M.; Fonseca, L.M.G.; Taquary, E.C.; Maretto, R.V.; Bendini, H.d.N.; Adami, M. Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series. Remote Sens. 2022, 14, 209. [Google Scholar] [CrossRef]
- Souza, C.M. Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models. Remote Sens. Environ. 2003, 87, 494–506. [Google Scholar] [CrossRef]
- Souza, C.M.; Siqueira, J. ImgTools: A Software for Optical Remotely Sensed Data Analysis; Anais XVI Simpósio Brasileiro de Sensoriamento Remoto (SBSR): Foz do Iguaçu, Brasil, 2013; pp. 1571–1578. [Google Scholar]
- Betbeder, J.; Arvor, D.; Blanc, L.; Cornu, G.; Bourgoin, C.; Le Roux, R.; Mercier, A.; Sist, P.; Lucas, M.; Brenez, C.; et al. Assessing the Causes of Tropical Forest Degradation Using Landsat Time Series: A Case Study in the Brazilian Amazon. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1015–1018. [Google Scholar] [CrossRef]
- Powell, R.; Roberts, D.; Dennison, P.; Hess, L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Tlapáková, L.; Stejskalová, D.; Karásek, P.; Podhrázská, J. Landscape Metrics as a Tool for Evaluation Landscape Structure—Case Study Hustopeče. Eur. Countrys. 2013, 5, 52–70. [Google Scholar] [CrossRef] [Green Version]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Pickell, P.D.; Bolton, D.K. Impact of time on interpretations of forest fragmentation: Three-decades of fragmentation dynamics over Canada. Remote Sens. Environ. 2019, 222, 65–77. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Ramler, I.; Sharp, R.; Haddad, N.M.; Gerber, J.S.; West, P.C.; Mandle, L.; Engstrom, P.; Baccini, A.; Sim, S.; et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 2015, 6, 10158. [Google Scholar] [CrossRef]
- Laurance, W.F.; Nascimento, H.E.M.; Laurance, S.G.; Andrade, A.; Ribeiro, J.E.L.S.; Giraldo, J.P.; Lovejoy, T.E.; Condit, R.; Chave, J.; Harms, K.E.; et al. Rapid decay of tree-community composition in Amazonian forest fragments. Proc. Natl. Acad. Sci. USA 2006, 103, 19010–19014. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.A.; Carbonell, R.; Virgos, E.; Santos, T.; Telleria, J.L. Effects of forest fragmentation on the distribution of the lizard Psammodromus algirus. Anim. Conserv. 2000, 3, 235–240. [Google Scholar] [CrossRef]
- Debinski, D.M.; Holt, R.D. A Survey and Overview of Habitat Fragmentation Experiments. Conserv. Biol. 2000, 14, 342–355. [Google Scholar] [CrossRef]
- Peh, K.S.H.; Lin, Y.; Luke, S.H.; Foster, W.A.; Turner, E.C. Forest Fragmentation and Ecosystem Function. In Global Forest Fragmentation; Kettle, C.J., Koh, L.P., Eds.; CABI: Wallingford, UK, 2014; pp. 96–114. [Google Scholar] [CrossRef]
- De Filho, F.J.B.O.; Metzger, J.P. Thresholds in landscape structure for three common deforestation patterns in the Brazilian Amazon. Landsc. Ecol. 2006, 21, 1061–1073. [Google Scholar] [CrossRef]
- Ferreira, I.J.M.; Ferreira, J.H.D.; Bueno, P.A.A.; Vieira, L.M.; Bueno, R.d.O.; do Couto, E.V. Spatial dimension landscape metrics of Atlantic Forest remnants in Paraná State, Brazil. Acta Sci. Technol. 2018, 1, e36503. [Google Scholar] [CrossRef]
- Slattery, Z.; Fenner, R. Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability 2021, 13, 3246. [Google Scholar] [CrossRef]
- Arvor, D.; Meirelles, M.; Dubreuil, V.; Bégué, A.; Shimabukuro, Y.E. Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices. Appl. Geogr. 2012, 32, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Spera, S.A.; Cohn, A.S.; VanWey, L.K.; Mustard, J.F.; Rudorff, B.F.; Risso, J.; Adami, M. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 2014, 9, 064010. [Google Scholar] [CrossRef] [Green Version]
- EMBRAPA. Código Florestal: Glossário. Available online: https://www.embrapa.br/codigo-florestal/entenda-o-codigo-florestal/glossario (accessed on 6 May 2021).
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); US Department of the Interior, US Geological Survey: Washington, DC, USA, 2011. [CrossRef]
- INTERMAT. Bases Cartográficas. Available online: http://www.intermat.mt.gov.br/-/11303036-bases-cartograficas (accessed on 12 January 2021).
- Kastens, J.H.; Brown, J.C.; Coutinho, A.C.; Bishop, C.R.; Esquerdo, J.C.D.M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 2017, 12, e0176168. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Malhi, Y.; Barbier, N.; Lima, A.; Shimabukuro, Y.; Anderson, L.; Saatchi, S. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Phil. Trans. R. Soc. B 2008, 363, 1779–1785. [Google Scholar] [CrossRef]
- Arvor, D.; Dubreuil, V.; Ronchail, J.; Simões, M.; Funatsu, B.M. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int. J. Climatol. 2014, 34, 2622–2633. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1–km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- OpenStreetMap Contributors. Planet Dump Retrieved from https://planet.osm.org. Available online: https://www.openstreetmap.org (accessed on 6 May 2021).
- World Bank. Brazil—Road Network (Federal and State Highways). Available online: https://datacatalog.worldbank.org/dataset/brazil-road-network-federal-and-state-highways (accessed on 6 May 2021).
- IBGE. State Boundary: Mato Grosso, Brasil. Available online: https://maps.princeton.edu/catalog/stanford-mt656st7052 (accessed on 6 May 2021).
- Global Forest Watch. Brazil Biomes. Available online: https://data.globalforestwatch.org/datasets/54ec099791644be4b273d9d8a853d4524/explore?showTable=true (accessed on 6 May 2021).
- IBGE. Urbanized Areas. Available online: https://www.ibge.gov.br/en/geosciences/full-list-geosciences/18097-urbanized-areas.html?=t=downloads (accessed on 6 May 2021).
- IBGE. Conheça Cidades e Estados do Brasil. Available online: https://cidades.ibge.gov.br/ (accessed on 6 May 2021).
- Ferreira, D.A.C.; Filho, A.C. Modelagem do Desmatamento no Município de Colniza—MT. Anais XIII Simpósio Brasileiro de Sensoriamento Remoto; INPE, Ed.; Instituto Nacional de Pesquisas Espaciais (INPE): São José dos Campos, Brazil, 2007; pp. 2565–2572. [Google Scholar]
- USGS. Landsat 8 (L8): Data Users Handbook; USGS: Reston, VA, USA, 2019.
- Hadi, K.A.; Krasovskii, A.; Maus, V.; Yowargana, P.; Pietsch, S.; Rautiainen, M. Monitoring Deforestation in Rainforests Using Satellite Data: A Pilot Study from Kalimantan, Indonesia. Forests 2018, 9, 389. [Google Scholar] [CrossRef] [Green Version]
- INPE. Metodologia Utilizada nos Projetos PRODES e DETER; Instituto Nacional de Pesquisas Espaciais (INPE): São José dos Campos, Brazil, 2019. [Google Scholar]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, M.G.; Alves, L.M.; Aguiar, A.P.D.; Arai, E.; Anderson, L.O.; Rosan, T.M.; Shimabukuro, Y.E.; de Aragão, L.E.O.E.C. Effects of climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Global Chang. Biol. 2019, 25, 2931–2946. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Smith, M.O.; Gillepsie, A.R. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In Remote Geochemical Analysis; Pieters, C., Englert, P., Eds.; Cambridge University Press: Cambridge, UK, 1993; pp. 145–166. [Google Scholar]
- Keshava, N. A Survey of Spectral Unmixing Algorithms. Linc. Lab. J. 2003, 14, 55–78. [Google Scholar]
- Pereira, J.; Chuvieco, E.; Beaudoin, A.; Desbois, N. Remote sensing of burned areas: A review. In A Review of Remote Sensing Methods for the Study of Large Wildland Fires; Chuvieco, E., Ed.; Universidad de Alcalá, Departamento de Geografía: Alcalá de Henares, Spain, 1997; pp. 127–183. [Google Scholar]
- Imazon. Project MapBiomas—Brazilian Land Cover & Use Map Series; Instituto do Homem e Meio Ambiente da Amazônia. (Imazon): Belém, Brazil, 2019. [Google Scholar]
- Souza, C.; Oliveira, L.; Fonseca, A.V. Multi-Decadal Annual Land Cover Dynamics and Forest Disturbance in the Brazilian Amazon Biome. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; p. 665. [Google Scholar] [CrossRef]
- Souza, C.; Oliveira, L.; Fonseca, A.; Siqueira, J.V.; Pinheiro, S.; Ribeiro, J.; Ferreira, B.; Ferreira, R.; Sales, M. Project MapBiomas—Amazon Appendix, Collection 6.0, Version 1. Available online: https://mapbiomas-br-site.s3.amazonaws.com/Metodologia/Amazon_-_Appendix_-_ATBD_Collection_6.docx.pdf (accessed on 24 March 2022).
- Huete, A.R. Remote Sensing for Environmental Monitoring. In Environmental Monitoring and Characterization; Elsevier: Amsterdam, The Netherlands, 2004; pp. 183–206. [Google Scholar] [CrossRef]
- Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 2004, 93, 359–367. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Souza, C.M.; Roberts, D.; Monteiro, A. Multitemporal Analysis of Degraded Forests in the Southern Brazilian Amazon. Earth Interact. 2005, 9, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, Y.E.; Smith, J.A. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Trans. Geosci. Remote Sens. 1991, 29, 16–20. [Google Scholar] [CrossRef]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Filho, R.A.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Liebsch, D.; Marques, M.C.; Goldenberg, R. How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol. Conserv. 2008, 141, 1717–1725. [Google Scholar] [CrossRef]
- Rozendaal, D.M.A.; Bongers, F.; Aide, T.M.; Alvarez-Dávila, E.; Ascarrunz, N.; Balvanera, P.; Becknell, J.M.; Bentos, T.V.; Brancalion, P.H.S.; Cabral, G.A.L.; et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 2019, 5, eaau3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.K.; Srivastava, P.K.; Szabó, S.; Petropoulos, G.P.; Gupta, M.; Islam, T. Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth Observation data-sets. Geocarto Int. 2016, 32, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Gökyer, E. Understanding Landscape Structure Using Landscape Metrics. In Advances in Landscape Architecture; Ozyavuz, M., Ed.; InTech: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Bosch, M. PyLandStats: An open-source Pythonic library to compute landscape metrics. PLoS ONE 2019, 14, e0225734. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; USDA: Washington, DC, USA, 2015.
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Mecocci, A. Theoretical and experimental assessment of noise effects on least-squares spectral unmixing of hyperspectral images. Opt. Eng. 2005, 44, 087008. [Google Scholar] [CrossRef]
- Tits, L.; Somers, B.; Coppin, P. The Potential and Limitations of a Clustering Approach for the Improved Efficiency of Multiple Endmember Spectral Mixture Analysis in Plant Production System Monitoring. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2273–2286. [Google Scholar] [CrossRef]
- Settle, J. On the effect of variable endmember spectra in the linear mixture model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 389–396. [Google Scholar] [CrossRef]
- Roberts, D.A.; Batista, G.; Pereira, J.; Waller, E.; Nelson, B. Change Identification Using Multitemporal Spectral Mixture Analysis:Applications in Eastern Amazonia. In Remote Sensing Change Detection; Elvidge, C.D., Lunetta, R.S., Eds.; Ann Arbor Press: Chelsea, MI, USA, 1999; pp. 137–158. [Google Scholar]
- Shimabukuro, Y.E.; Beuchle, R.; Grecchi, R.C.; Achard, F. Assessment of forest degradation in Brazilian Amazon due to selective logging and fires using time series of fraction images derived from Landsat ETM+ images. Remote Sens. Lett. 2014, 5, 773–782. [Google Scholar] [CrossRef]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INPE. Monitoramento da Floresta Amazônica Brasileira por Satélite; Instituto Nacional de Pesquisas Espaciais: São José dos Campos, Brasil, 2020. [Google Scholar]
- López Barrera, F.; Armesto, J.J.; Williams-Linera, G.; Smith-Ramirez, C.; Manson, R. Fragmentation and Edge Effects on Plant–Animal Interactions, Ecological Processes and Biodiversity. In Biodiversity Loss and Conservation in Fragmented Forest Landscapes; Newton, A.C., Ed.; CABI: Wallingford, UK; Cambridge, MA, USA, 2007; pp. 69–101. [Google Scholar] [CrossRef]
- Ries, L.; Fletcher, R.J.; Battin, J.; Sisk, T.D. Ecological Responses to Habitat Edges: Mechanisms, Models, and Variability Explained. Annu. Rev. Ecol. Evol. 2004, 35, 491–522. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Ministério das Relações Exteriores. Federative Republic of Brazil: Intended Nationally Determined Contribution Towards Achieving the Objective of the United Nations Framework Convention on Climate Change; Ministério das Relações Exteriores: Brasília, Brazil, 2015.
Landscape metric | Equation | Unit | Short Description |
---|---|---|---|
Percentage of Landscape of Class | = area of each patch = total landscape area | percent [%] | Percentage of landscape belonging to class i. Describes the composition of the landscape. |
Number of Patches | = number of patches | - | Number of patches of class i. Describes the fragmentation of the landscape. |
Largest Patch Index | = area of the largest patch = total landscape area | percent [%] | The proportion of total class comprised by the largest patch of class i. Simple measure of dominance. |
Patch Density | = number of patches = total landscape area | [1/ha] | Density of patches of class i. Describes the fragmentation of the landscape. |
Mean Patch Area | = area of each patch | hectare [ha] | Mean of all patch areas belonging to class i. Describes the composition of the landscape. |
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall Accuracy | 0.859 | 0.859 | 0.890 | 0.859 | 0.846 | 0.871 | 0.859 | 0.834 | 0.854 | 0.845 | 0.852 | 0.846 | 0.853 | 0.853 | 0.858 | 0.856 |
Kappa | 0.717 | 0.716 | 0.774 | 0.715 | 0.696 | 0.737 | 0.714 | 0.672 | 0.706 | 0.691 | 0.702 | 0.691 | 0.701 | 0.702 | 0.709 | 0.710 |
Class | Fraction | Minimum (%) | Mean (%) | Maximum (%) | Standard Deviation |
---|---|---|---|---|---|
Non-Forest | NPV | 0 | 11.2 | 20 | 4.4 |
GV | 0 | 30.5 | 76 | 20.2 | |
Soil | 0 | 18.6 | 53 | 10.3 | |
Degradation | NPV | 2 | 6.4 | 10 | 1.8 |
GV | 70 | 77.1 | 83 | 3.0 | |
Soil | 0 | 1.6 | 5 | 1.9 | |
Forest | NPV | 0 | 3.6 | 7 | 1.6 |
GV | 75 | 88.3 | 100 | 9.3 | |
Soil | 0 | 0.2 | 3 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halbgewachs, M.; Wegmann, M.; da Ponte, E. A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes: A Case Study in Mato Grosso, Brazil. Remote Sens. 2022, 14, 1907. https://doi.org/10.3390/rs14081907
Halbgewachs M, Wegmann M, da Ponte E. A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes: A Case Study in Mato Grosso, Brazil. Remote Sensing. 2022; 14(8):1907. https://doi.org/10.3390/rs14081907
Chicago/Turabian StyleHalbgewachs, Magdalena, Martin Wegmann, and Emmanuel da Ponte. 2022. "A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes: A Case Study in Mato Grosso, Brazil" Remote Sensing 14, no. 8: 1907. https://doi.org/10.3390/rs14081907
APA StyleHalbgewachs, M., Wegmann, M., & da Ponte, E. (2022). A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes: A Case Study in Mato Grosso, Brazil. Remote Sensing, 14(8), 1907. https://doi.org/10.3390/rs14081907