Perspectives on the Special Issue for Applications of Remote Sensing for Livestock and Grazingland Management
Abstract
:1. Introduction
2. Satellite Imagery Applications
3. Aerial Remote Sensing
4. Field Data Integration
5. New Management Applications
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fetzel, T.; Havlik, P.; Herrero, M.; Kaplan, J.; Kastner, T.; Kroisleitner, C.; Rolinski, S.; Searchinger, T.; Van Bodegom, P.; Wirsenius, S. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 2017, 31, 1089–1102. [Google Scholar] [CrossRef] [Green Version]
- Erb, K.-H.; Gaube, V.; Krausmann, F.; Plutzar, C.; Bondeau, A.; Haberl, H. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2007, 2, 191–224. [Google Scholar] [CrossRef]
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; Food & Agriculture Organization: Rome, Italy, 2005; Volume 34. [Google Scholar]
- Tueller, P.T. Remote sensing technology for rangeland management applications. J. Range Manag. 1989, 42, 442–453. [Google Scholar] [CrossRef]
- Rhodes, E.C.; Angerer, J.P.; Fox, W.E.M.; Jason, R. Woody vegetation cover, attrition and patch metrics over eight decades in central Texas, USA. Rangel. Ecol. Manag. 2021, 78, 54–66. [Google Scholar] [CrossRef]
- Mateu, J.; Stein, A. Introduction to the special issue Towards Spatial Data Science. Spat. Stat. 2021, 42, 100466. [Google Scholar] [CrossRef]
- Booth, D.T.; Tueller, P.T. Rangeland monitoring using remote sensing. Arid Land Res. Manag. 2003, 17, 455–467. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Everitt, J.H.; Ritchie, J.C.; Moran, M.S.; Booth, D.T.; Anderson, G.L.; Clark, P.E.; Seyfried, M.S. Applications and research using remote sensing for rangeland management. Photogramm. Eng. Remote Sens. 2003, 69, 675–693. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, E.L. A remote rangeland analysis system. J. Range Manag. 1976, 29, 66–73. [Google Scholar] [CrossRef]
- Planet Team. Planet Application Program Interface. In Space for Life on Earth; Planet Labs: San Francisco, CA, USA, 2017; p. 40. [Google Scholar]
- NASA GSFC. Landsat Science Webpage. Available online: https://landsat.gsfc.nasa.gov/ (accessed on 5 January 2022).
- Maxar. DigitalGlobe Web Page. Available online: https://discover.digitalglobe.com/ (accessed on 5 January 2022).
- Brice, E.M.; Miller, B.A.; Zhang, H.; Goldstein, K.; Zimmer, S.N.; Grosklos, G.J.; Belmont, P.; Flint, C.G.; Givens, J.E.; Adler, P.B. Impacts of climate change on multiple use management of Bureau of Land Management land in the Intermountain West, USA. Ecosphere 2020, 11, e03286. [Google Scholar] [CrossRef]
- Reeves, M.C.; Hanberry, B.B.; Wilmer, H.; Kaplan, N.E.; Lauenroth, W.K. An assessment of production trends on the Great Plains from 1984 to 2017. Rangel. Ecol. Manag. 2021, 78, 165–179. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Miyake, B.A. Comparison of stocking rates from remote sensing and geospatial data. Rangel. Ecol. Manag. 2006, 59, 11–18. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- Jones, M.O.; Allred, B.W.; Naugle, D.E.; Maestas, J.D.; Donnelly, P.; Metz, L.J.; Karl, J.; Smith, R.; Bestelmeyer, B.; Boyd, C. Innovation in rangeland monitoring: Annual, 30 m, plant functional type percent cover maps for US rangelands, 1984–2017. Ecosphere 2018, 9, e02430. [Google Scholar] [CrossRef]
- Zimmer, S.N.; Schupp, E.W.; Boettinger, J.L.; Reeves, M.C.; Thacker, E.T. Considering Spatiotemporal Forage Variability in Rangeland Inventory and Monitoring. Rangel. Ecol. Manag. 2021, 79, 53–63. [Google Scholar] [CrossRef]
- Jones, M.O.; Naugle, D.E.; Twidwell, D.; Uden, D.R.; Maestas, J.D.; Allred, B.W. Beyond inventories: Emergence of a new era in rangeland monitoring. Rangel. Ecol. Manag. 2020, 73, 577–583. [Google Scholar] [CrossRef]
- Allred, B.W.; Bestelmeyer, B.T.; Boyd, C.S.; Brown, C.; Davies, K.W.; Duniway, M.C.; Ellsworth, L.M.; Erickson, T.A.; Fuhlendorf, S.D.; Griffiths, T.V. Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty. Methods Ecol. Evol. 2021, 12, 841–849. [Google Scholar] [CrossRef]
- Jansen, V.; Kolden, C.; Schmalz, H.; Karl, J.; Taylor, R. Using Satellite-Based Vegetation Data for Short-Term Grazing Monitoring to Inform Adaptive Management. Rangel. Ecol. Manag. 2021, 76, 30–42. [Google Scholar] [CrossRef]
- Herrick, J.E.; Karl, J.W.; McCord, S.E.; Buenemann, M.; Riginos, C.; Courtright, E.; Van Zee, J.; Ganguli, A.C.; Angerer, J.; Brown, J.R. Two new mobile apps for rangeland inventory and monitoring by landowners and land managers. Rangelands 2017, 39, 46–55. [Google Scholar] [CrossRef]
- Herrick, J.E.; Urama, K.C.; Karl, J.W.; Boos, J.; Johnson, M.-V.V.; Shepherd, K.D.; Hempel, J.; Bestelmeyer, B.T.; Davies, J.; Guerra, J.L. The global Land-Potential Knowledge System (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. J. Soil Water Conserv. 2013, 68, 5A–12A. [Google Scholar] [CrossRef] [Green Version]
- Hudson, T.D.; Reeves, M.C.; Hall, S.A.; Yorgey, G.G.; Neibergs, J.S. Big landscapes meet big data: Informing grazing management in a variable and changing world. Rangelands 2021, 43, 17–28. [Google Scholar] [CrossRef]
- Jones, M.O.; Robinson, N.P.; Naugle, D.E.; Maestas, J.D.; Reeves, M.C.; Lankston, R.W.; Allred, B.W. Annual and 16-day rangeland production estimates for the western United States. Rangel. Ecol. Manag. 2020, 77, 112–117. [Google Scholar] [CrossRef]
- Weeda, C.; Machen, R.; Mathis, C.; Turner, B.; Drawe, D.L.; McCan, B.; Huegele, B.; Perotto-Baldivieso, H. Using geospatial technologies to optimize brush management on a south Texas rangeland. In Proceedings of the Society for Range Management 72nd Annual Meeting, Minneapolis, MN, USA, 10–14 February 2019. [Google Scholar]
- Walther, C.H. Response of Tanglehead to Prescribed Burning and Cattle Grazing; Texas A&M University: Kingsville, TX, USA, 2019. [Google Scholar]
- Awuma, K.; Stuth, J.; Kaitho, R.; Angerer, J. Application of normalized differential Vegetation Index and geostatistical techniques in cattle diet quality mapping in Ghana. Outlook Agric. 2007, 36, 205–213. [Google Scholar] [CrossRef]
- Tolleson, D.R.; Angerer, J.P.; Kreuter, U.P.; Sawyer, J.E. Growing Degree Day: Noninvasive Remotely Sensed Method to Monitor Diet Crude Protein in Free-Ranging Cattle. Rangel. Ecol. Manag. 2020, 73, 234–242. [Google Scholar] [CrossRef]
- Ungar, E.D.; Henkin, Z.; Gutman, M.; Dolev, A.; Genizi, A.; Ganskopp, D. Inference of animal activity from GPS collar data on free-ranging cattle. Rangel. Ecol. Manag. 2005, 58, 256–266. [Google Scholar] [CrossRef]
- Ganskopp, D.C.; Bohnert, D.W. Landscape nutritional patterns and cattle distribution in rangeland pastures. Appl. Anim. Behav. Sci. 2009, 116, 110–119. [Google Scholar] [CrossRef]
- Ganskopp, D.; Cruz, R.; Johnson, D. Least-effort pathways?: A GIS analysis of livestock trails in rugged terrain. Appl. Anim. Behav. Sci. 2000, 68, 179–190. [Google Scholar] [CrossRef]
- Ganskopp, D. Manipulating cattle distribution with salt and water in large arid-land pastures: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2001, 73, 251–262. [Google Scholar] [CrossRef]
- Larson-Praplan, S.; George, M.; Buckhouse, J.; Laca, E. Spatial and temporal domains of scale of grazing cattle. Anim. Prod. Sci. 2015, 55, 284–297. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Marini, D.; Lea, J.M.; Keshavarzi, H.; Dyall, T.R.; Lee, C. The application of virtual fencing technology effectively herds cattle and sheep. Anim. Prod. Sci. 2021, 61, 1393–1402. [Google Scholar] [CrossRef]
- Anderson, D.M. Virtual fencing past, present and future. Rangel. J. 2007, 29, 65–78. [Google Scholar] [CrossRef]
- Boyd, C.S.; O’Connor, R.; Ranches, J.; Bohnert, D.W.; Bates, J.D.; Johnson, D.D.; Davies, K.W.; Parker, T.; Doherty, K.E. Virtual Fencsing Effectively Excludes Cattle from Burned Sagebrush Steppe. Rangel. Ecol. Manag. 2022, 81, 55–62. [Google Scholar] [CrossRef]
- Angerer, J.; Fox, W. Improving analytics for forage and livestock risk management using remote sensing, simulation models, and forecasting. In Proceedings of the Society for Range Management 72nd Annual Meeting, Minneapolis, MN, USA, 10–14 February 2019. [Google Scholar]
- Angerer, J.P. 16. Technologies, Tools and Methodologies for Forage Evaluation in Grasslands and Rangelands. 2012. Available online: https://www.fao.org/3/i3043e/I3043E.pdf (accessed on 27 May 2021).
- International Telecommunication Union. Internet of Things Global Standards Initiative. Available online: https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx (accessed on 5 January 2022).
- Maclean, I.M.; Mosedale, J.R.; Bennie, J.J. Microclima: An r package for modelling meso-and microclimate. Methods Ecol. Evol. 2019, 10, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Kearney, M.R.; Porter, W.P. NicheMapR–an R package for biophysical modelling: The ectotherm and Dynamic Energy Budget models. Ecography 2020, 43, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Solutions, P.E. From Maps to Megabytes: P2’s Tobin Celebrates 90 Years. Available online: https://www.prnewswire.com/news-releases/from-maps-to-megabytes-p2s-tobin-celebrates-90-years-300698338.html (accessed on 27 May 2021).
- International, T. A History of Success (Webarchive). Available online: https://web.archive.org/web/20100626053232/http://www.tobin.com/AboutHistorySuccess.asp (accessed on 27 May 2021).
- Aerodrome, T. Edgar Gardner Tobin. Available online: http://www.theaerodrome.com/aces/usa/tobin.php (accessed on 27 May 2021).
- APFO, USDA. Historical Aerial Photography Field Office (APFO) Information Sheet. Available online: https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/APFO/geospatial-services/pdfs/historical-imagery-infosheet-2016_v2.pdf (accessed on 27 May 2021).
- Berg, M.D.; Wilcox, B.P.; Angerer, J.P.; Rhodes, E.C.; Fox, W.E. Deciphering rangeland transformation—complex dynamics obscure interpretations of woody plant encroachment. Landsc. Ecol. 2016, 31, 2433–2444. [Google Scholar] [CrossRef]
- Berg, M.D.; Sorice, M.G.; Wilcox, B.P.; Angerer, J.P.; Rhodes, E.C.; Fox, W.E. Demographic changes drive woody plant cover trends—an example from the Great Plains. Rangel. Ecol. Manag. 2015, 68, 315–321. [Google Scholar] [CrossRef]
- Washington-Allen, R.A.; West, N.E.; Ramsey, R.D.; Efroymson, R.A. A protocol for retrospective remote sensing–based ecological monitoring of rangelands. Rangel. Ecol. Manag. 2006, 59, 19–29. [Google Scholar] [CrossRef]
- Wandinger, U. Introduction to lidar. In Lidar; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–18. [Google Scholar]
- Nelson, R. How did we get here? An early history of forestry lidar. Can. J. Remote Sens. 2013, 39, S6–S17. [Google Scholar] [CrossRef] [Green Version]
- Krabill, W.; Collins, J.; Link, L.; Swift, R.; Butler, M. Airborne laser topographic mapping results. Photogramm. Eng. Remote Sens. 1984, 50, 685–694. [Google Scholar]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.C.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Jansen, V.; Kolden, C.; Greaves, H.; Eitel, J. Lidar provides novel insights into the effect of pixel size and grazing intensity on measures of spatial heterogeneity in a native bunchgrass ecosystem. Remote Sens. Environ. 2019, 235, 111432. [Google Scholar] [CrossRef]
- János, T.; Éva, K.N.; Péter, R.; Bernadett, G.; Erika, B.-B.; Miklós, G.; Attila, N. Application of Lidar Technology in Cattle Grazing Areas. Sustain. Dev. 2019, 9, 106–112. [Google Scholar]
- Shamoon, H.; Dayan, T.; Saltz, D. Cattle grazing effects on mountain gazelles in Mediterranean natural landscapes. J. Wildl. Manag. 2017, 81, 1351–1362. [Google Scholar] [CrossRef]
- Schulze-Brüninghoff, D.; Hensgen, F.; Wachendorf, M.; Astor, T. Methods for LiDAR-based estimation of extensive grassland biomass. Comput. Electron. Agric. 2019, 156, 693–699. [Google Scholar] [CrossRef]
- Gillan, J.K.; Karl, J.W.; van Leeuwen, W.J. Integrating drone imagery with existing rangeland monitoring programs. Environ. Monit. Assess. 2020, 192, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bao, Y.; Wang, D.; Xin, X.; Ding, L.; Xu, D.; Hou, L.; Shen, J. Using UAV LiDAR to Extract Vegetation Parameters of Inner Mongolian Grassland. Remote Sens. 2021, 13, 656. [Google Scholar] [CrossRef]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.A.L.; Blaise, Y.; Castro Muñoz, E.; Lebeau, F.; Bindelle, J. Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef] [Green Version]
- Goldman Sachs. Drones, Reporting for Work. Available online: https://www.goldmansachs.com/insights/technology-driving-innovation/drones/ (accessed on 5 January 2022).
- Barnett, M. Gee Whiz Technology: Keep an Open Mind. In The Cattleman; Texas and Southwestern Cattle Raisers Association: Fort Worth, TX, USA, 2019; pp. 78–83. [Google Scholar]
- Komp, M. Advanced UAS operations: What’s in store for range management. In Proceedings of the Society for Range Management 72nd Annual Meeting, Minneapolis, MN, USA, 10–14 February 2019. [Google Scholar]
- DiMaggio, A.M.; Perotto-Baldivieso, H.L.; Walther, C.; Labrador-Rodriquez, K.N.; Page, M.T.; Martinez, J.d.l.L.; Rideout-Hanzak, S.; Hedquist, B.C.; Wester, D.B. A Pilot Study to Estimate Forage Mass from Unmanned Aerial Vehicles in a Semi-Arid Rangeland. Remote Sens. 2020, 12, 2431. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Processes Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Howell, R.G.; Jensen, R.R.; Petersen, S.L.; Larsen, R.T. Measuring height characteristics of sagebrush (Artemisia sp.) using imagery derived from small unmanned aerial systems (sUAS). Drones 2020, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Sankey, T.T.; Leonard, J.M.; Moore, M.M. Unmanned aerial vehicle− Based rangeland monitoring: Examining a century of vegetation changes. Rangel. Ecol. Manag. 2019, 72, 858–863. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Gillan, J.K.; McClaran, M.P.; Swetnam, T.L.; Heilman, P. Estimating forage utilization with drone-based photogrammetric point clouds. Rangel. Ecol. Manag. 2019, 72, 575–585. [Google Scholar] [CrossRef]
- Olsoy, P.J.; Shipley, L.A.; Rachlow, J.L.; Forbey, J.S.; Glenn, N.F.; Burgess, M.A.; Thornton, D.H. Unmanned aerial systems measure structural habitat features for wildlife across multiple scales. Methods Ecol. Evol. 2018, 9, 594–604. [Google Scholar] [CrossRef]
- Ancin-Murguzur, F.J.; Munoz, L.; Monz, C.; Hausner, V.H. Drones as a tool to monitor human impacts and vegetation changes in parks and protected areas. Remote Sens. Ecol. Conserv. 2020, 6, 105–113. [Google Scholar] [CrossRef]
- Cruzan, M.B.; Weinstein, B.G.; Grasty, M.R.; Kohrn, B.F.; Hendrickson, E.C.; Arredondo, T.M.; Thompson, P.G. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology. Appl. Plant Sci. 2016, 4, 1600041. [Google Scholar] [CrossRef]
- Goodwin, J. Quick Carbon: Tools for tomorrow, today. In Proceedings of the Society for Range Management 72nd Annual Meeting, Minneapolis, MN, USA, 10–14 February 2019. [Google Scholar]
- Eddy, I.M.; Gergel, S.E.; Coops, N.C.; Henebry, G.M.; Levine, J.; Zerriffi, H.; Shibkov, E. Integrating remote sensing and local ecological knowledge to monitor rangeland dynamics. Ecol. Indic. 2017, 82, 106–116. [Google Scholar] [CrossRef]
- Yale School of Forestry and Environmental Studies. Quick Cabon Webpage. Available online: https://www.quickcarbon.org/ (accessed on 5 January 2022).
- Kane, D.; Oldfield, E.; Bradford, M. Quick carbon: A rapid, landscape-scale soil carbon assessment tool. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019; p. B31E-02. [Google Scholar]
- Zimmer, S.N. Forage Inventory and Modeling in Uintah and Ouray Reservation Rangelands; Utah State University: Logan, UT, USA, 2020. [Google Scholar]
- Matere, J.; Simpkin, P.; Angerer, J.; Olesambu, E.; Ramasamy, S.; Fasina, F. Predictive Livestock Early Warning System (PLEWS): Monitoring forage condition and implications for animal production in Kenya. Weather Clim. Extrem. 2020, 27, 100209. [Google Scholar] [CrossRef]
- Stuth, J.W.; Angerer, J.; Kaitho, R.; Jama, A.; Marambii, R. Livestock early warning system for Africa rangelands. In Monitoring and Predicting Agricultural Drought: A Global Study; Oxford Scholarship: New York, NY, USA, 2005; pp. 283–296. [Google Scholar]
- Ku, N.-W.; Popescu, S.C.; Ansley, R.J.; Perotto-Baldivieso, H.L.; Filippi, A.M. Assessment of available rangeland woody plant biomass with a terrestrial LIDAR system. Photogramm. Eng. Remote Sens. 2012, 78, 349–361. [Google Scholar] [CrossRef]
- Sankey, J.B.; Munson, S.M.; Webb, R.H.; Wallace, C.S.; Duran, C.M. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR. Remote Sens. 2015, 7, 342–359. [Google Scholar] [CrossRef] [Green Version]
- Tolleson, D.R.; Rhodes, E.C.; Malambo, L.; Angerer, J.P.; Redden, R.R.; Treadwell, M.L.; Popescu, S.C. Old School and High Tech: A Comparison of Methods to Quantify Ashe Juniper Biomass as Fuel or Forage. Rangelands 2019, 41, 159–168. [Google Scholar] [CrossRef]
- Knight, C.; Bailey, D.; Faulkner, D. Low-cost global positioning system tracking collars for use on cattle. Rangel. Ecol. Manag. 2018, 71, 506–508. [Google Scholar] [CrossRef]
- González, L.A.; Bishop-Hurley, G.J.; Handcock, R.N.; Crossman, C. Behavioral classification of data from collars containing motion sensors in grazing cattle. Comput. Electron. Agric. 2015, 110, 91–102. [Google Scholar] [CrossRef]
- Agouridis, C.T.; Stombaugh, T.S.; Workman, S.R.; Koostra, B.K.; Edwards, D.R.; Vanzant, E.S. Suitability of a GPS collar for grazing studies. Trans. ASAE 2004, 47, 1321. [Google Scholar] [CrossRef]
- Cheleuitte-Nieves, C.; Perotto-Baldivieso, H.L.; Wu, X.B.; Cooper, S.M. Association patterns reveal dispersal-aggregation dynamics among cattle in a South Texas Rangeland, USA. Ecol. Processes 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Rutter, S.; Beresford, N.; Roberts, G. Use of GPS to identify the grazing areas of hill sheep. Comput. Electron. Agric. 1997, 17, 177–188. [Google Scholar] [CrossRef]
- Putfarken, D.; Dengler, J.; Lehmann, S.; Härdtle, W. Site use of grazing cattle and sheep in a large-scale pasture landscape: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2008, 111, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Schneider, D.; Trotter, M. Identifying Sheep Activity from Tri-Axial Acceleration Signals Using a Moving Window Classification Model. Remote Sens. 2020, 12, 646. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.; Cronin, G.; González, L.; Hall, E.; Merchant, A.; Ingram, L. The Behavioural Responses of Beef Cattle (Bos taurus) to Declining Pasture Availability and the Use of GNSS Technology to Determine Grazing Preference. Agriculture 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Millward, M.F.; Bailey, D.W.; Cibils, A.F.; Holechek, J.L. A GPS-based evaluation of factors commonly used to adjust cattle stocking rates on both extensive and mountainous rangelands. Rangelands 2020, 42, 63–71. [Google Scholar] [CrossRef]
- Clark, P.E.; Lee, J.; Ko, K.; Nielson, R.M.; Johnson, D.E.; Ganskopp, D.C.; Chigbrow, J.; Pierson, F.B.; Hardegree, S.P. Prescribed fire effects on resource selection by cattle in mesic sagebrush steppe. Part 1: Spring grazing. J. Arid Environ. 2014, 100, 78–88. [Google Scholar] [CrossRef]
- Allred, B.W.; Fuhlendorf, S.D.; Hovick, T.J.; Dwayne Elmore, R.; Engle, D.M.; Joern, A. Conservation implications of native and introduced ungulates in a changing climate. Glob. Change Biol. 2013, 19, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Augustine, D.J.; Derner, J.D. Controls over the strength and timing of fire–grazer interactions in a semi-arid rangeland. J. Appl. Ecol. 2014, 51, 242–250. [Google Scholar] [CrossRef]
- Pearson, C.; Lush, L.; González, L.A. Intravaginal Devices and GNSS Collars with Satellite Communication to Detect Calving Events in Extensive Beef Production in Northern Australia. Remote Sens. 2020, 12, 3963. [Google Scholar] [CrossRef]
- Hulbert, I.A.; Wyllie, J.T.; Waterhouse, A.; French, J.; McNulty, D. A note on the circadian rhythm and feeding behaviour of sheep fitted with a lightweight GPS collar. Appl. Anim. Behav. Sci. 1998, 60, 359–364. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, M. Use of a Satellite-Based Aridity Index to Monitor Decreased Soil Water Content and Grass Growth in Grasslands of North-East Asia. Remote Sens. 2020, 12, 3556. [Google Scholar] [CrossRef]
- Giralt-Rueda, J.M.; Santamaria, L. Complementary Differences in Primary Production and Phenology among Vegetation Types Increase Ecosystem Resilience to Climate Change and Grazing Pressure in an Iconic Mediterranean Ecosystem. Remote Sens. 2021, 13, 3920. [Google Scholar] [CrossRef]
- Richardson, W.; Stringham, T.K.; Lieurance, W.; Snyder, K.A. Changes in Meadow Phenology in Response to Grazing Management at Multiple Scales of Measurement. Remote Sens. 2021, 13, 4028. [Google Scholar] [CrossRef]
- Poděbradská, M.; Wylie, B.K.; Bathke, D.J.; Bayissa, Y.A.; Dahal, D.; Derner, J.D.; Fay, P.A.; Hayes, M.J.; Schacht, W.H.; Volesky, J.D.; et al. Monitoring Climate Impacts on Annual Forage Production across U.S. Semi-Arid Grasslands. Remote Sens. 2022, 14, 4. [Google Scholar] [CrossRef]
- Pearson, C.; Filippi, P.; González, L.A. The Relationship between Satellite-Derived Vegetation Indices and Live Weight Changes of Beef Cattle in Extensive Grazing Conditions. Remote Sens. 2021, 13, 4132. [Google Scholar] [CrossRef]
- Irisarri, J.G.N.; Durante, M.; Derner, J.D.; Oesterheld, M.; Augustine, D.J. Remotely Sensed Spatiotemporal Variation in Crude Protein of Shortgrass Steppe Forage. Remote Sens. 2022, 14, 854. [Google Scholar] [CrossRef]
- White, R.P.; Murray, S.; Rohweder, M.; Prince, S.; Thompson, K. Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Reynolds, S.; Frame, J. Grasslands: Developments, Opportunities, Perspectives; Science Publishers, Inc.: Enfield, NH, USA, 2005. [Google Scholar]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Craine, J.M.; Elmore, A.; Angerer, J.P. Long-term declines in dietary nutritional quality for North American cattle. Environ. Res. Lett. 2017, 12, 044019. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food & Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Albalawi, E.K.; Kumar, L. Using remote sensing technology to detect, model and map desertification: A review. J. Food Agric. Environ. 2013, 11, 791–797. [Google Scholar] [CrossRef]
- Zimmer, S.N.; Grosklos, G.J.; Belmont, P.; Adler, P.B. Agreement and uncertainty among climate change impact models: A synthesis of sagebrush steppe vegetation projections. Rangel. Ecol. Manag. 2021, 75, 119–129. [Google Scholar] [CrossRef]
- Reeves, M.; Moreno, A.; Bagne, K.; Running, S. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 2014, 126, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Reeves, M.C.; Bagne, K.E.; Tanaka, J. Potential climate change impacts on four biophysical indicators of cattle production from western US Rangelands. Rangel. Ecol. Manag. 2017, 70, 529–539. [Google Scholar] [CrossRef]
- Belgacem, A.O.; Louhaichi, M. The vulnerability of native rangeland plant species to global climate change in the West Asia and North African regions. Clim. Change 2013, 119, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; He, B.; Li, X.; Yin, C.; Qiu, S. Desertification assessment and trend analysis using modis data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5739–5742. [Google Scholar]
- FAO. The Future of Food and Agriculture—Trends and Challenges; Annual Reports; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Valin, H.; Sands, R.D.; Van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.; Fujimori, S.; Hasegawa, T.; Havlik, P. The future of food demand: Understanding differences in global economic models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google earth engine applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Angerer, J. Relevant “Big Data” Collection Tools and Their Use in Forage and Grazinglands Research. In Proceedings of the ASA, CSSA and SSSA International Annual Meetings (2019), San Antonio, TX, USA, 10–13 November 2019. [Google Scholar]
- Herrick, J.E.; Beh, A.; Barrios, E.; Bouvier, I.; Coetzee, M.; Dent, D.; Elias, E.; Hengl, T.; Karl, J.W.; Liniger, H. The land-potential knowledge system (LandPKS): Mobile apps and collaboration for optimizing climate change investments. Ecosyst. Health Sustain. 2016, 2, e01209. [Google Scholar] [CrossRef] [Green Version]
- Van Horn, G.; Mac Aodha, O.; Song, Y.; Cui, Y.; Sun, C.; Shepard, A.; Adam, H.; Perona, P.; Belongie, S. The inaturalist species classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8769–8778. [Google Scholar]
- Howell, R.G.; Petersen, S.L.; Balzotti, C.S.; Rogers, P.C.; Jackson, M.W.; Hedrich, A.E. Using webgis to develop a spatial bibliography for organizing, mapping, and disseminating research information: A case study of quaking aspen. Rangelands 2019, 41, 244–247. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhodes, E.C.; Perotto-Baldivieso, H.L.; Reeves, M.C.; Gonzalez, L.A. Perspectives on the Special Issue for Applications of Remote Sensing for Livestock and Grazingland Management. Remote Sens. 2022, 14, 1882. https://doi.org/10.3390/rs14081882
Rhodes EC, Perotto-Baldivieso HL, Reeves MC, Gonzalez LA. Perspectives on the Special Issue for Applications of Remote Sensing for Livestock and Grazingland Management. Remote Sensing. 2022; 14(8):1882. https://doi.org/10.3390/rs14081882
Chicago/Turabian StyleRhodes, Edward C., Humberto L. Perotto-Baldivieso, Matthew C. Reeves, and Luciano A. Gonzalez. 2022. "Perspectives on the Special Issue for Applications of Remote Sensing for Livestock and Grazingland Management" Remote Sensing 14, no. 8: 1882. https://doi.org/10.3390/rs14081882
APA StyleRhodes, E. C., Perotto-Baldivieso, H. L., Reeves, M. C., & Gonzalez, L. A. (2022). Perspectives on the Special Issue for Applications of Remote Sensing for Livestock and Grazingland Management. Remote Sensing, 14(8), 1882. https://doi.org/10.3390/rs14081882