An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Scientometric Analysis
2.3. Remote Sensing Impact Factor (RSIF)
3. Results
3.1. Statistical Characteristics
3.2. Analysis of the Distribution of Articles among Journals and Research Areas
3.3. RSIF for Different Satellites
3.4. Knowledge Base Analysis
3.5. Subject Analysis
3.6. Cooperation Network Analysis
4. Discussion
4.1. Significant Publications Referencing EO Satellite Data
Article | Author | Year | Strength | Begin | End |
---|---|---|---|---|---|
The MODIS aerosol algorithm, products, and validation [84] | Remer LA | 2005 | 162.12 | 2005 | 2010 |
Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors [83] | Chander G | 2009 | 158.18 | 2010 | 2014 |
High-Resolution Global Maps of 21st-Century Forest Cover Change [89] | Hansen MC | 2013 | 154.8 | 2015 | 2018 |
Object-based cloud and cloud shadow detection in Landsat imagery | Zhu Z | 2012 | 128.93 | 2014 | 2017 |
Landsat-8: Science and product vision for terrestrial global change research [87] | Roy DP | 2014 | 125.74 | 2015 | 2020 |
High-resolution mapping of global surface water and its long-term changes [90] | Pekel JF | 2016 | 116.51 | 2018 | 2020 |
Random forest in remote sensing: A review of applications and future directions [91] | Belgiu M | 2016 | 110.12 | 2018 | 2020 |
Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land [85] | Levy RC | 2007 | 109.76 | 2007 | 2012 |
MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets [88] | Friedl MA | 2010 | 109.08 | 2011 | 2015 |
The Collection 6 MODIS aerosol products over land and ocean [86] | Levy RC | 2013 | 95.89 | 2015 | 2018 |
4.2. Other Significant Satellite Missions
4.3. Big Earth Data Cloud Processing Platforms
5. Conclusions
- (1)
- In recent years, the number of publications and citations referencing EO satellites—particularly Landsat, MODIS and Sentinel—has increased rapidly. However, the number of articles referencing AVHRR, SPOT, and TerraSAR is tending to decrease. The Sentinel mission shows the most promise for future applications.
- (2)
- The published EO satellite papers were concentrated in a small number of journals, with 43.79% of articles being published in only 13 journals. The United States is the most important host country for the relevant journals and the most important source of articles in the relevant journals, thus making a significant contribution to the development of remote sensing.
- (3)
- A new impact index, the RSIF, was constructed to measure the impact of the use of EO satellite data and future possible trends in their application. Based on the values of the RSIF that we calculated, we believe that currently, the EO satellite missions that are of the most significance are Landsat, Sentinel, and MODIS. We also believe that, within the next five years (2021–2025), Sentinel data will become the most widely used EO satellite data. Sentinel, Landsat, and MODIS will still be the most influential satellite missions; there will also be more opportunities for the Gaofen and WorldView missions to promote significant advances in remote sensing applications and be used widely if their data are open access.
- (4)
- EO satellite data have been widely used in studies of the land, the atmosphere, water, phenology, and biomass. Vegetation, climate, and land cover are the main research focuses in which EO data are used. Landsat is currently the most important EO satellite. The EO satellite mission for the widest range of EO applications, however, is MODIS.
- (5)
- RF is a popular machine-learning classifier and is widely used for processing images. The use of multi-source satellite data helps to produce high-quality information.
- (6)
- In terms of the number of relevant references, the United States and China dominate research in which EO satellite data are applied: together, they account for 25,168 or 39.17% of the papers that we analyzed. Related research in China has developed rapidly in recent years.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Chen, N.C.; Sheng, H.; Ip, C.; Yang, L.; Chen, Y.; Sang, Z.; Tadesse, T.; Lim, T.P.Y.; Rajabifard, A.; et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 2019, 693, 11. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://undocs.org/en/A/RES/70/71 (accessed on 22 February 2022).
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 22 February 2022).
- Estoque, R.C. A review of the sustainability concept and the state of SDG monitoring using remote sensing. Remote Sens. 2020, 12, 1770. [Google Scholar] [CrossRef]
- GEO Group on Earth Observations. Earth Observations in Support of the 2030 Agenda for Sustainable Development. 2017. Available online: https://www.earthobservations.org/documents/publications/201703_geo_eo_for_202030_agenda.pdf (accessed on 22 February 2022).
- United Nations. Political Declaration of the High-Level Political Forum on Sustainable Development Convened under the Auspices of the General Assembly. 2019. Available online: https://undocs.org/en/A/RES/74/74 (accessed on 22 February 2022).
- Song, Y.; Wu, P. Earth observation for sustainable infrastructure: A review. Remote Sens. 2021, 13, 1528. [Google Scholar] [CrossRef]
- Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth observations for sustainable urban development. Remote Sens. 2020, 12, 1646. [Google Scholar] [CrossRef]
- Ferreira, B.; Iten, M.; Silva, R.G. Monitoring sustainable development by means of Earth observation data and machine learning: A review. Environ. Sci Eur. 2020, 32, 120. [Google Scholar] [CrossRef]
- Achard, F.; Stibig, H.-J.; Eva, H.D.; Lindquist, E.J.; Bouvet, A.; Arino, O.; Mayaux, P. Estimating tropical deforestation from Earth observation data. Carbon Manag. 2014, 1, 271–287. [Google Scholar] [CrossRef] [Green Version]
- Scholze, M.; Buchwitz, M.; Dorigo, W.; Guanter, L.; Quegan, S. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences 2017, 14, 3401–3429. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Cord, A.F.; Brauman, K.A.; Chaplin-Kramer, R.; Huth, A.; Ziv, G.; Seppelt, R. Priorities to advance monitoring of ecosystem services using Earth observation. Trends Ecol. Evol. 2017, 32, 416–428. [Google Scholar] [CrossRef]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An overview of platforms for big Earth observation data management and analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef] [Green Version]
- Vali, A.; Comai, S.; Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral Earth observation data: A review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Li, D.R.; Tong, Q.X.; Li, R.X.; Gong, J.Y.; Zhang, L.P. Current issues in high-resolution Earth observation technology. Sci. China-Earth Sci. 2012, 55, 1043–1051. [Google Scholar] [CrossRef]
- Lodhi, V.; Chakravarty, D.; Mitra, P. Hyperspectral imaging for Earth observation: Platforms and instruments. J. Indian Inst. Sci. 2018, 98, 429–443. [Google Scholar] [CrossRef]
- Tatem, A.J.; Goetz, S.J.; Hay, S.I. Fifty years of Earth-observation satellites—Views from space have led to countless advances on the ground in both scientific knowledge and daily life. Am. Sci. 2008, 96, 390–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandau, R. Status and trends of small satellite missions for Earth observation. Acta Astronaut. 2010, 66, 1–12. [Google Scholar] [CrossRef]
- Filchev, L.; Manakos, I.; Reuter, R.; Mardirossian, G.; Srebrova, T.; Kraleva, L.; Dimitrov, D.; Marini, K.; Rienow, A. A review of Earth observation resources for secondary school education—Part 1. Aerosp. Res. Bulg. 2020, 32, 224–240. [Google Scholar] [CrossRef]
- Filchev, L.; Manakos, I.; Reuter, R.; Mardirossian, G.; Srebrova, T.; Kraleva, L.; Dimitrov, D.; Marini, K.; Rienow, A. A review of Earth observation resources for secondary school education—Part 2. Aerosp. Res. Bulg. 2021, 33, 251–259. [Google Scholar] [CrossRef]
- Asimakopoulou, P.; Nastos, P.; Vassilakis, E.; Hatzaki, M.; Antonarakou, A. Earth observation as a facilitator of climate change education in schools: The teachers’ perspectives. Remote Sens. 2021, 13, 1587. [Google Scholar] [CrossRef]
- Da Ponte, E.; Fleckenstein, M.; Leinenkugel, P.; Parker, A.; Oppelt, N.; Kuenzer, C. Tropical forest cover dynamics for Latin America using Earth observation data: A review covering the continental, regional, and local scale. Int. J. Remote Sens. 2015, 36, 3196–3242. [Google Scholar] [CrossRef]
- Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth observation based monitoring of forests in germany: A review. Remote Sens. 2020, 12, 3570. [Google Scholar] [CrossRef]
- Pasher, J.; Smith, P.A.; Forbes, M.R.; Duffe, J. Terrestrial ecosystem monitoring in Canada and the greater role for integrated Earth observation. Environ. Rev. 2014, 22, 179–187. [Google Scholar] [CrossRef]
- Pfeifer, M.; Disney, M.; Quaife, T.; Marchant, R. Terrestrial ecosystems from space: A review of Earth observation products for macroecology applications. Glob. Ecol. Biogeogr. 2012, 21, 603–624. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Reyes, C.; Brauman, K.A.; Chaplin-Kramer, R.; Galford, G.L.; Adamo, S.B.; Anderson, C.B.; Anderson, C.; Allington, G.R.H.; Bagstad, K.J.; Coe, M.T.; et al. Reimagining the potential of Earth observations for ecosystem service assessments. Sci. Total Environ. 2019, 665, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021, 10, 1. [Google Scholar] [CrossRef]
- Crocetti, L.; Forkel, M.; Fischer, M.; Jurečka, F.; Grlj, A.; Salentinig, A.; Trnka, M.; Anderson, M.; Ng, W.-T.; Kokalj, Ž.; et al. Earth observation for agricultural drought monitoring in the Pannonian Basin (Southeastern Europe): Current state and future directions. Reg. Environ. Chang. 2020, 20, 123. [Google Scholar] [CrossRef]
- Petropoulos, G.; Srivastava, P.; Piles, M.; Pearson, S. Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Ngcofe, L.; Van Niekerk, A. Advances in optical Earth observation for geological mapping: A review. S. Afr. J. Geomat. 2016, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; Smeth, J.B.d.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Marti, R.; Li, Z.; Catry, T.; Roux, E.; Mangeas, M.; Handschumacher, P.; Gaudart, J.; Tran, A.; Demagistri, L.; Faure, J.-F.; et al. A mapping review on urban landscape factors of dengue retrieved from Earth observation data, gis techniques, and survey questionnaires. Remote Sens. 2020, 12, 932. [Google Scholar] [CrossRef] [Green Version]
- Parselia, E.; Kontoes, C.; Tsouni, A.; Hadjichristodoulou, C.; Kioutsioukis, I.; Magiorkinis, G.; Stilianakis, N.I. Satellite Earth observation data in epidemiological modeling of malaria, dengue and west nile virus: A scoping review. Remote Sens. 2019, 11, 1862. [Google Scholar] [CrossRef] [Green Version]
- Sogno, P.; Traidl-Hoffmann, C.; Kuenzer, C. Earth observation data supporting non-communicable disease research: A review. Remote Sens. 2020, 12, 2541. [Google Scholar] [CrossRef]
- Tran, A.; Goutard, F.; Chamaillé, L.; Baghdadi, N.; Lo Seen, D. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth observation satellites. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 1–8. [Google Scholar] [CrossRef]
- Weng, Q.; Xu, B.; Hu, X.; Liu, H. Use of Earth observation data for applications in public health. Geocarto Int. 2013, 29, 3–16. [Google Scholar] [CrossRef]
- Jia, P.; Stein, A.; James, P.; Brownson, R.C.; Wu, T.; Xiao, Q.; Wang, L.; Sabel, C.E.; Wang, Y. Earth observation: Investigating noncommunicable diseases from space. Annu. Rev. Public Health 2019, 40, 85–104. [Google Scholar] [CrossRef] [Green Version]
- de Jong, R.; de Bruin, S.; Schaepman, M.; Dent, D. Quantitative mapping of global land degradation using Earth observations. Int. J. Remote Sens. 2011, 32, 6823–6853. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, Q.; Chu, X. Accelerated spread of Fukushima’s waste water by ocean circulation. Innovation 2021, 2, 100119. [Google Scholar] [CrossRef]
- Duncan, B.N. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. 2003, 108, ACH 1-1–ACH 1-22. [Google Scholar] [CrossRef] [Green Version]
- Politi, E.; Paterson, S.K.; Scarrott, R.; Tuohy, E.; O’Mahony, C.; Cámaro-García, W.C.A. Earth observation applications for coastal sustainability: Potential and challenges for implementation. Anthr. Coasts 2019, 2, 306–329. [Google Scholar] [CrossRef] [Green Version]
- Grainger, A. Citizen observatories and the new Earth observation science. Remote Sens. 2017, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Kuffer, M.; Thomson, D.R.; Boo, G.; Mahabir, R.; Grippa, T.; Vanhuysse, S.; Engstrom, R.; Ndugwa, R.; Makau, J.; Darin, E.; et al. The role of Earth observation in an integrated deprived area mapping “system” for low-to-middle income countries. Remote Sens. 2020, 12, 982. [Google Scholar] [CrossRef] [Green Version]
- Guo, H. Understanding global natural disasters and the role of Earth observation. Int. J. Digit. Earth 2010, 3, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K.; Aso, N.; Takiguchi, F. Space-based response to the 2011 Great East Japan Earthquake: Lessons learnt from JAXA’s support using Earth observation satellites. Int. J. Disaster Risk Reduct. 2015, 12, 134–153. [Google Scholar] [CrossRef] [Green Version]
- Theron, A.; Engelbrecht, J. The role of Earth observation, with a focus on SAR interferometry, for sinkhole hazard assessment. Remote Sens. 2018, 10, 1506. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.C.; Koutsias, N.; Petropoulos, G.P.; Srivastava, P.K.; Ben Dor, E. Land use/land cover in view of Earth observation: Data sources, input dimensions, and classifiers—A review of the state of the art. Geocarto Int. 2019, 36, 957–988. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Hu, Z.; Kuenzer, C.; Dietz, A.J.; Dech, S. The potential of Earth observation for the analysis of cold region land surface dynamics in europe—A review. Remote Sens. 2017, 9, 1067. [Google Scholar] [CrossRef] [Green Version]
- Philipp, M.; Dietz, A.; Buchelt, S.; Kuenzer, C. Trends in satellite Earth observation for permafrost related analyses—A review. Remote Sens. 2021, 13, 1217. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.-Z.; Han, L.-J.; Cheng, L.-H.; Lv, Y.-H.; Fu, B.-J.; Feng, X.-M.; Wu, X. Shortened duration and reduced area of frozen soil in the Northern Hemisphere. Innovation 2021, 2, 100146. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Kuenzer, C.; Ottinger, M.; Wegmann, M.; Guo, H.; Wang, C.; Zhang, J.; Dech, S.; Wikelski, M. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks. Int. J. Remote Sens. 2014, 35, 6599–6647. [Google Scholar] [CrossRef] [Green Version]
- Lawford, R.; Strauch, A.; Toll, D.; Fekete, B.; Cripe, D. Earth observations for global water security. Curr. Opin. Environ. Sustain. 2013, 5, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Uereyen, S.; Kuenzer, C. A review of Earth observation-based analyses for major river basins. Remote Sens. 2019, 11, 2951. [Google Scholar] [CrossRef] [Green Version]
- Elmes, A.; Alemohammad, H.; Avery, R.; Caylor, K.; Eastman, J.; Fishgold, L.; Friedl, M.; Jain, M.; Kohli, D.; Laso Bayas, J.; et al. Accounting for training data error in machine learning applied to Earth observations. Remote Sens. 2020, 12, 1034. [Google Scholar] [CrossRef] [Green Version]
- Loew, A.; Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation practices for satellite-based Earth observation data across communities. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef] [Green Version]
- Mayr, S.; Kuenzer, C.; Gessner, U.; Klein, I.; Rutzinger, M. Validation of Earth observation time-series: A review for large-area and temporally dense land surface products. Remote Sens. 2019, 11, 2616. [Google Scholar] [CrossRef] [Green Version]
- Merchant, C.J.; Paul, F.; Popp, T.; Ablain, M.; Bontemps, S.; Defourny, P.; Hollmann, R.; Lavergne, T.; Laeng, A.; de Leeuw, G.; et al. Uncertainty information in climate data records from Earth observation. Earth Syst. Sci. Data 2017, 9, 511–527. [Google Scholar] [CrossRef] [Green Version]
- Pohl, C.; Van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 2010, 19, 823–854. [Google Scholar] [CrossRef] [Green Version]
- Web of Science. Available online: https://www.webofscience.com/ (accessed on 22 February 2022).
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.C.; Li, G.Q.; Xia, J.S.; Ben, J.; Cao, Q.Q.; Zhao, L.; Ma, Y.; Zhang, L.C.; Zhu, D.H. Enabling the big Earth observation data via cloud computing and DGGS: Opportunities and challenges. Remote Sens. 2020, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.Z.; Yang, C.W.; Li, Q.Q. Building a spatiotemporal index for Earth observation big data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 245–252. [Google Scholar] [CrossRef]
- Guo, H.D.; Liu, Z.; Jiang, H.; Wang, C.L.; Liu, J.; Liang, D. Big Earth Data: A new challenge and opportunity for Digital Earth’s development. Int. J. Digit. Earth 2017, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS-J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Andrefouet, S.; Cohen, W.B.; Gomez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using Landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis ready data: Enabling analysis of the Landsat archive. Remote Sens. 2018, 10, 1363. [Google Scholar]
- Fishtahler, L.E. Standard data products from the MODIS science team. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 1997), Singapore, 3 August 1997; pp. 1249–1251. [Google Scholar]
- Brown, J.F.; Howard, D.; Wylie, B.; Frieze, A.; Ji, L.; Gacke, C. Application-ready expedited MODIS data for operational land surface monitoring of vegetation condition. Remote Sens. 2015, 7, 16226–16240. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Science of Landsat analysis ready data. Remote Sens. 2019, 11, 2166. [Google Scholar] [CrossRef] [Green Version]
- Plank, S. Rapid damage assessment by means of multi-temporal SAR—A comprehensive review and outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- Radocaj, D.; Obhodas, J.; Jurisic, M.; Gasparovic, M. Global open data remote sensing satellite missions for land monitoring and conservation: A review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.H.; Chen, J.M.; Liang, S.L.; Xu, B.; Shi, J.C.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Hese, S.; Lucht, W.; Schmullius, C.; Barnsley, M.; Dubayah, R.; Knorr, D.; Neumann, K.; Riedel, T.; Schroter, K. Global biomass mapping for an improved understanding of the CO2 balance—The Earth observation mission Carbon-3D. Remote Sens. Environ. 2005, 94, 94–104. [Google Scholar] [CrossRef]
- Nature Index. Available online: https://www.natureindex.com/ (accessed on 22 February 2022).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res.-Atmos. 2007, 112, D13210. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS-J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Menzel, W.P.; Purdom, J.F.W. Introducing GOES-I—The 1st of a new-generation of geostationary operational environmental satellites. Bull. Am. Meteorol. Soc. 1994, 75, 757–781. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, A. Toward more integrated utilizations of geostationary satellite data for disaster management and risk mitigation. Remote Sens. 2021, 13, 1553. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O.; Yoshida, Y. Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America. Atmos. Meas. Tech. 2019, 12, 4291–4307. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Knapp, D.E.; Schill, S.R.; Roelfsema, C.; Phinn, S.; Silman, M.; Mascaro, J.; Asner, G.P. Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. Remote Sens. Environ. 2019, 232, 111302. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Mascaro, J. Coral reef atoll assessment in the South China Sea using Planet Dove satellites. Remote Sens. Ecol. Conserv. 2017, 3, 57–65. [Google Scholar] [CrossRef]
- Csillik, O.; Kumar, P.; Asner, G.P. Challenges in estimating tropical forest canopy height from Planet DOVE imagery. Remote Sens. 2020, 12, 1160. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.D. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data 2017, 1, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.Z.; von Laszewski, G.; Younge, A.; He, X.; Kunze, M.; Tao, J.; Fu, C. Cloud computing: A perspective study. New Gener. Comput. 2010, 28, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Dong, J.; Zhuang, D.F.; Huang, Y.H.; Fu, J.Y. Advances in multi-sensor data fusion: Algorithms and applications. Sensors 2009, 9, 7771–7784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
Number of Articles Per Journal | Number of Journals | Number of Articles | Percentage of the Number of Articles (%) |
---|---|---|---|
501–4627 | 13 | 19,999 | 43.79 |
101–499 | 54 | 10,992 | 24.07 |
6–100 | 586 | 12,320 | 26.97 |
2–5 | 561 | 1684 | 3.69 |
1 | 678 | 678 | 1.48 |
All Earth Observation Satellites | Sentinel | Landsat | MODIS | Gaofen | WorldView | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cluster (Size) | Mean Year | Cluster (Size) | Mean Year | Cluster (Size) | Mean Year | Cluster (Size) | Mean Year | Cluster (Size) | Mean Year | Cluster (Size) | Mean Year |
Land-cover change (427) | 1995 | Deep learning (143) | 2016 | Spectral mixture analysis (352) | 2003 | Phenology (243) | 2011 | Convolutional neural network (78) | 2016 | OBIA (93) | 2011 |
Great Lakes (395) | 1988 | Leaf area index (115) | 2009 | Landsat (324) | 2011 | Aerosols (227) | 2003 | Cloud detection (42) | 2015 | WorldView-3 (80) | 2015 |
Random forest (370) | 2014 | InSAR (96) | 2014 | Habitat (243) | 1994 | Land surface temperature (186) | 2012 | Gaofen-3 (39) | 2016 | Pan-sharpening (54) | 2014 |
Evapotranspiration (329) | 2005 | Random forest (84) | 2016 | Savanna (243) | 1999 | AOD (171) | 2009 | Ship detection (39) | 2016 | Bathymetry (49) | 2012 |
Landsat (280) | 2011 | Deforestation (61) | 2013 | Landscape ecology (229) | 1988 | BRDF * (169) | 1998 | Satellite image (37) | 2014 | Indigenous forest (47) | 2013 |
Aerosols (222) | 2002 | Sentinel-1 (54) | 2016 | Google Earth Engine (208) | 2014 | Google Earth Engine (144) | 2012 | Object-based classification (34) | 2014 | Deep learning (45) | 2016 |
Phenology (177) | 2010 | Flood mapping (51) | 2016 | Climate change (166) | 2013 | Information sources (129) | 1993 | Digital surface model (40) | 2012 | ||
Land surface temperature (167) | 2013 | Soil moisture (50) | 2013 | PM 2.5 (124) | 1980 | Evapotranspiration (128) | 2009 | Urban areas (35) | 2007 | ||
Biomass burning (165) | 2003 | Water quality (48) | 2016 | Sentinel-2 (117) | 2016 | Leaf area index (123) | 2004 | Linear discriminant analysis (31) | 2009 | ||
AOD (142) | 2011 | Image fusion (40) | 2017 | Land surface temperature (114) | 2015 | Biomass burning (112) | 2006 | Index ratios (22) | 2010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. https://doi.org/10.3390/rs14081863
Zhao Q, Yu L, Du Z, Peng D, Hao P, Zhang Y, Gong P. An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sensing. 2022; 14(8):1863. https://doi.org/10.3390/rs14081863
Chicago/Turabian StyleZhao, Qiang, Le Yu, Zhenrong Du, Dailiang Peng, Pengyu Hao, Yongguang Zhang, and Peng Gong. 2022. "An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends" Remote Sensing 14, no. 8: 1863. https://doi.org/10.3390/rs14081863
APA StyleZhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., & Gong, P. (2022). An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sensing, 14(8), 1863. https://doi.org/10.3390/rs14081863