The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia
Abstract
:1. Introduction
2. Study Area
2.1. Geographical Settings
2.2. Geological Settings
3. Data and Methods
4. Results
4.1. Historical Orthophotos Analysis
4.2. Remote Landslide Mapping
4.3. Geological Field Investigations
4.4. Precipitation Analysis
4.5. Gajevo Landslide Engineering–Geological Map and Cross-Section Development
5. Discussion
5.1. Activation Time
5.2. Landslide Conditioning Factors
5.2.1. Terrain Characteristics
5.2.2. Anthropogenic Factor
5.2.3. Climate Change and Precipitation Value Correlation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; International Association for Engineering Geology: Paris, France, 1984; pp. 1–63. [Google Scholar]
- Cornforth, D.H. Landslides in Practice: Investigation, Analysis, and Remedial/Preventative Options in Soils; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–596. [Google Scholar]
- Bell, F.G. Geological Hazards: Their Assessments, Avoidance and Mitigation; E&FN Spon Press: London, UK, 2003. [Google Scholar]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; US Geological Survey: Denver, CO, USA, 2008; pp. 1–147. [Google Scholar] [CrossRef]
- Giordan, D.; Allasia, P.; Manconi, A.; Baldo, M.; Santangelo, M.; Cardinali, M.; Corazza, A.; Albanese, V.; Lollino, G.; Guzzetti, F. Morphological and kinematic evolution of a large earthflow: The Montaguto landslide, southern Italy. Geomorphology 2013, 187, 61–79. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; de Jong, S. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; Mercuri, M.; Borrelli, L. Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing. Remote Sens. 2021, 13, 120. [Google Scholar] [CrossRef]
- Podolszki, L.; Kosović, I.; Novosel, T.; Kurečić, T. Multi-Level Sensing Technologies in Landslide Research—Hrvatska Kostajnica Case Study, Croatia. Sensors 2022, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Podolszki, L.; Kurečić, T.; Bateson, L.; Svennevig, K. Remote Landslide Mapping, Field Validation and Model Development—An Example from Kravarsko, Croatia. Geol. Croat. 2022, 75, 67–82. [Google Scholar] [CrossRef]
- Paine, D.P.; Kiser, J.D. Aerial Photography and Image Interpretation, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Miklin, Ž.; Podolszki, L.; Novosel, T.; Sokolić, Ž.; Ofak, J.; Padovan, B.; Zailac, K. Detaljna Inženjerskogeološka Karta Podsljemenske Urbanizirane Zone Mjerila 1:5000 (DIGK-Faza II)[Detailed Engineering–geological Map of Podsljeme Urban Area in Scale of 1:5000 (Phase II)—In Croatian]. Unpublished internal map, Croat. Geol. Surv., Zagreb 2018, Books 1-6, 41 maps.
- Miklin, Ž.; Mlinar, Ž.; Brkić, Ž.; Hećimović, I. Detaljna Inženjerskogeološka Karta Podsljemenske Urbanizirane Zone Mjerila 1:5000 (DIGK-Faza I) [Detailed Engineering–geological Map of Podsljeme Urban Area in Scale of 1:5000 (Phase I)—In Croatian]. Unpublished internal map, Croat. Geol. Surv., Zagreb 2007, Books 1-4, 44 maps.
- Zagrebačka županija. Proglašena Elementarna Nepogoda Za Općinu Kravarsko. Available online: https://www.zagrebacka-zupanija.hr/vijesti/1763/proglasena-elementarna-nepogoda-za-opcinu-kravarsk (accessed on 17 February 2022).
- Miklin, L. Primjena Metoda Daljinskih Istraživanja Na Klizištu Gajevo, Kravarsko [Application of Remote Sensing Methods on the Gajevo Landslide (Kravarsko)—In Croatian]. Master’s Thesis, University of Zagreb, Zagreb, Croatia, 2021. [Google Scholar]
- Bostjančić, I.; Filipović, M.; Gulam, V.; Pollak, D. Regional-Scale Landslide Susceptibility Mapping Using Limited LiDAR-Based Landslide Inventories for Sisak-Moslavina County, Croatia. Sustainability 2021, 13, 4543. [Google Scholar] [CrossRef]
- Crozier, M.J. Deciphering the Effect of Climate Change on Landslide Activity: A Review. Geomorphology 2010, 124, 260–267. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a Changing Climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J. A Slippery Slope: Could Climate Change Lead to More Landslides? Eos 2020, 101, 1–13. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; Mcvicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Data Descriptor: Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimac, I.; Perčec Tadić, M. New 1981–2010 Climatological Normals for Croatia and Comparison to Previous 1961–1990 and 1971–2000 Normals. In Proceedings of the GeoMLA Conference, Belgrade, Srbija, 21–24 June 2016; pp. 79–85, ISBN 978-86-7518-190-3. [Google Scholar]
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D. Klimatski Atlas Hrvatske: 1961–1990: 1971–2000. [Climate Atlas of Croatia: 1961–1990: 1971–2000.—In Croatian]. 2008, p. 200. ISBN 978-953-7526-01-6.
- Pikija, M. Osnovna Geološka Karta SFRJ 1:100.000—List Sisak L33-93 [Basic Geological Map SFRY in Scale of 1:100,000—Sheet Sisak L33-93—In Croatian]; Belgrade, Serbia, 1987.
- Pikija, M. Osnovna Geološka Karta SFRJ 1:100.000—Tumač Za List Sisak L33-93 [Guide for Basic Geological Map SFRY in Scale of 1:100,000—Sheet Sisak L33-93—In Croatian]; Belgrade, 1987.
- Rögl, F.; Steininger, F.F. Neogene Paratethys, Mediterranean and Indo-Pacific Seaways. Geol. J. 1984, 11, 171–200. [Google Scholar]
- Neubauer, T.A.; Harzhauser, M.; Kroh, A.; Georgopoulou, E.; Mandic, O. A Gastropod-Based Biogeographic Scheme for the European Neogene Freshwater Systems. Earth-Sci. Rev. 2015, 143, 98–116. [Google Scholar] [CrossRef] [Green Version]
- Mandic, O.; Kurečić, T.; Neubauer, T.A.; Harzhauser, M. Stratigraphic and Palaeogeographic Significance of Lacustrine Molluscs from the Pliocene Viviparus Beds in Central Croatia. Geol. Croat. 2015, 68, 179–207. [Google Scholar] [CrossRef]
- Kurečić, T. Sedimentologija i Paleoekologija Pliocenskih Viviparus Slojeva Vukomeričkih Gorica a [Sedimentology and Paleoecology of Pliocene Viviparus Beds from the Area of Vukomeričke Gorice—in Croatian]. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2017. [Google Scholar]
- Šikić, K., Basch, O.; Šimunić, A. Osnovna Geološka Karta SFRJ 1:100.000—List Zagreb L33-80 [Basic Geological Map SFRY in Scale of 1:100,000—Sheet Zagreb L33-80—In Croatian]; Belgrade, Serbia, 1978.
- Šikić, K.; Basch, O.; Šimunić, A. Osnovna Geološka Karta SFRJ 1:100.000—Tumač Za List Zagreb L33-80 [Guide for Basic Geological Map SFRY in Scale of 1:100,000—Sheet Zagreb L33-80—In Croatian]; Belgrade, Serbia, 1979.
- Tišljar, J. Sedimentologija Klastičnih Silicijskih Taložina. Institut Za Geološka Istraživanja [Sedimentology of Clastic Silicon Sediments. Institute of Geological Research—In Croatian]; Institut za geološka istraživanja: Zagreb, Croatia, 2004. [Google Scholar]
- Šimunić, A. Geološko Kartiranje Sjeveroistočnog Dijela Vukomeričkih Gorica [Geological Mapping of North Eastern Part of Vukomerička Hills—In Croatian]; Croatian Geological Survey: Zagreb, Croatia, 1964; Unpublished internal report. [Google Scholar]
- Halamić, J.; Belak, M.; Pavelić, D.; Avanić, R.; Filjak, R.; Šparica, M.; Brkić, M.; Kovačić, M.; Vrsaljko, D.; Banak, A.; et al. Osnovna Geološka Karta Republike Hrvatske Mjerila 1: 50,000—Požeška Gora [Basic Geological Map of the Republic of Croatia 1:50000—Požeška Gora—in Croatian]; Zagreb, Croatia, 2019.
- Sebe, K.; Kovačić, M.; Magyar, I.; Krizmanić, K.; Špelić, M.; Bigunac, D.; Sütő-Szentai, M.; Kovács, Á.; Szuromi-Korecz, A.; Bakrač, K.; et al. Correlation of Upper Miocene-Pliocene Lake Pannon Deposits across the Drava Basin, Croatia and Hungary. Geol. Croat. 2020, 73, 177–195. [Google Scholar] [CrossRef]
- Kovačić, M. Sedimentologija Gornjomiocenskih Naslaga Jugozapadnog Dijela Panonskog Bazena [Sedimentology of the Upper Miocene Deposits from the Southwestern Part of Pannonian Basin—in Croatian with an English Summary]. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2004. [Google Scholar]
- Pollak, D.; Hećej, N.; Grizelj, A. Landslide Inventory and Characteristics, Based on LiDAR Scanning and Optimised Field Investigations in the Kutina Area. Geol. Croat. 2021, 75. [Google Scholar] [CrossRef]
- Bostjančić, I.; Avanić, R.; Frangen, T.; Pavić, M. Spatial Distribution and Geometric Characteristics of Landslides with Special Reference to Geological Units in the Area of Slavonski Brod, Croatia. Geol. Croat. 2022, 75. [Google Scholar] [CrossRef]
- Čubrilović, P.; Palavestrić, L.; Nikolić, T. Inženjerskogeološka Karta Jugoslavije 1:500,000 [Engineering–geological Map of Yugoslavia in Scale of 1:500,000—in Croatian]; Belgrade, Srbija, 1967.
- Frangen, T.; Pavić, M.; Gulam, V.; Kurečić, T. Use of LiDAR-Derived Landslide Inventory Map in Assessing Influencing Factors for Landslide Susceptibility of Geological Units in the Petrinja Area (Croatia). Geol. Croat. 2022, 75, 35–49. [Google Scholar] [CrossRef]
- Podolszki, L.; Pollak, D.; Gulam, V.; Miklin, Ž. Development of Landslide Susceptibility Map of Croatia. In Engineering Geology for Society and Territory—Volume 2: Landslide Processes; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 2, pp. 947–950. [Google Scholar] [CrossRef] [Green Version]
- Braun, K. Inženjerskogeološka Karta Republike Hrvatske M 1:300.000 [Engineering–geological Map of the Republic of Croatia 1: 300,000—In Croatian]; Croatian Geological Survey: Zagreb, Croatia 1999; Unpublished internal map.
- Calcaterra, D.; Parise, M.; Palma, B. Combining Historical and Geological Data for the Assessment of the Landslide Hazard: A Case Study from Campania, Italy. Nat. Hazards Earth Syst. Sci. 2003, 3, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The Rainfall Intensity—Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Valenzuela, P.; José, I.M.; Antonio, D.I.M.; García, M. Rainfall Thresholds for the Triggering of Landslides Considering Previous Soil Moisture Conditions (Asturias, NW Spain). Landslides 2018, 15, 273–282. [Google Scholar] [CrossRef]
- Mwaniki, M.; Ngigi, T.; Waithaka, E. Rainfall Induced Landslide Probability Mapping for Central Province. In Proceedings of the Geoinformation for a Better World: Proceedings Applied Geoinformatics for Society and Environment 2011—AGSE 2011, Nairobi, Kenya, 15–19 August 2011; pp. 203–213. [Google Scholar] [CrossRef]
- Leyva, S.; Cruz-Pérez, N.; Rodríguez-Martín, J.; Miklin, L.; Santamarta, J.C. Rockfall and Rainfall Correlation in the Anaga Nature Reserve in Tenerife (Canary Islands, Spain). Rock Mech. Rock Eng. 2022. [Google Scholar] [CrossRef]
- Miklin, Ž.; Urumović, K.; Terzić, J.; Halamić, J.; Novosel, T. Engineering–geological Model of Landslide Dragodan. Zb. na Tr.—Kn. 1/Lepitkova, S.; Boev, B.—Struga Makedon. Geološko Društvo, 2016; pp. 229–237.
- Kosović, I.; Podolszki, L.; Pollak, D.; Gulam, V.; Bostjančić, I.; Frangen, T. Landslide Kubarnovo Brdo—Stari Put in Hrvatska Kostajnica. In Proceedings of the 6th Croatian Geological Congress with International Participation, Zagreb, Croatia, 9–12 October 2019; Excursion Guide-Book; Hrvatski Geološki Institute—Croatian Geological Survey: Zagreb, Croatia, 2019; pp. 9–11. [Google Scholar]
- Gulam, V.; Bostjančić, I.; Hećej, N.; Filipović, M.; Filjak, R. Preliminary Analysis of LiDAR-Based Landslide Inventory in the Area of Samobor. Geol. Croat. 2022, 75. [Google Scholar] [CrossRef]
- Frančula, N.; Lapaine, M.; Vucetic, N. Primjena Daljinskih Istraživanja u Kartografiji. Geod. List 1994, 48, 265–276. [Google Scholar]
- Miyagi, T.; Prasad, B.G.; Tanavud, C.; Potichan, A.; Hamasaki, E. Landslide Risk Evaluation and Mapping—Manual of Aerial Photo Interpretation for Landslide Topography and Risk Management—Report of the National Research Institute for Earth Science and Disaster Prevention; Japan, 2004. [CrossRef]
- Podolszki, L. Stereoskopska Analiza Klizišta i Relativne Opasnosti Od Klizanja Na Južnim Obroncima Medvednice [Stereoscopic Analysis of Landslides and Landslide Susceptibility on the Southern Slopes of the Medvednica Mt.—In Croatian]. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2014. [Google Scholar]
- McCalpin, J. Preliminary Age Classification of Landslides for Inventory Mapping. In Proceedings of the 21st Annual Symposium on Engineering Geology and Soil Engineering Symposium; University Press: Moscow, Idaho, 1984; pp. 99–111. [Google Scholar]
- Ministry of Economy and Sustainable Development of the Republic of Croatia; Utjecaji Klimatskih Promjena [Impacts of Climate Change- In Croatian]. Available online: https://prilagodba-klimi.hr/utjecaji-klimatskih-promjena/ (accessed on 17 February 2022).
- Luo, J.; Zheng, Z.; Li, T.; He, S. Spatial Heterogeneity of Microtopography and Its Influence on the Flow Convergence of Slopes under Different Rainfall Patterns. J. Hydrol. 2017, 545, 88–99. [Google Scholar] [CrossRef]
- Komori, D.; Rangsiwanichpong, P.; Inoue, N.; Ono, K. Climate Risk Management Distributed Probability of Slope Failure in Thailand under Climate Change. Clim. Risk Manag. 2018, 20, 126–137. [Google Scholar] [CrossRef]
- Peleikis, J.; Grätz, M.; Brnada, I. Adaptation to Climate Change in Croatia Country Brief. 2014, 1–13. Available online: https://www4.unfccc.int/sites/NAPC/Documents%20NAP/Adaptation%20Strategies%20and%20Plans/Adaptation%20to%20Climate%20Change%20in%20Croatia.pdf (accessed on 17 February 2022).
- Bello-Rodríguez, V.; Gómez, L.A.; Fernández López, Á.; Del-Arco-Aguilar, M.J.; Hernández-Hernández, R.; Emerson, B.; González-Mancebo, J.M. Short- and Long-Term Effects of Fire in Subtropical Cloud Forests on an Oceanic Island. Land Degrad. Dev. 2019, 30, 448–458. [Google Scholar] [CrossRef]
- Hendrix, C.S.; Salehyan, I. Climate Change, Rainfall, and Social Conflict in Africa. J. Peace Res. 2012, 49, 35–50. [Google Scholar] [CrossRef]
- Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. Implications of Climate Change on Landslide Hazard in Central Italy. Sci. Total Environ. 2018, 630, 1528–1543. [Google Scholar] [CrossRef]
- Perčec Tadić, M.; Gajić Čapka, M. Karta Srednje Godišnje Količine Oborine za Razdoblje 1971–2000; [Map of the average annual precipitation for the period 1971–2000]; Državni Hidrometeorloški Zavod: Zagreb, Croatia, 2010. [Google Scholar]
- Fowler, H.J.; Ali, H.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Cabi, N.S.; Chan, S.; Dale, M.; et al. Towards Advancing Scientific Knowledge of Climate Change Impacts on Short-Duration Rainfall Extremes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20190542. [Google Scholar] [CrossRef] [PubMed]
- Sipayung, S.B.; Nurlatifah, A.; Siswanto, B.; Slamet S, L. Analysis of Climate Change Impact on Rainfall Pattern of Sambas District, West Kalimantan. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012029. [Google Scholar] [CrossRef]
- Dore, M.H.I. Climate Change and Changes in Global Precipitation Patterns: What Do We Know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Skempton, A.W. The Pore-Pressure Coefficient in Saturated Soils. Géotechnique 1960, 10, 186–187. [Google Scholar] [CrossRef]
- Gao, Q.F.; Zeng, L.; Shi, Z.N. Effects of Desiccation Cracks and Vegetation on the Shallow Stability of a Red Clay Cut Slope under Rainfall Infiltration. Comput. Geotech. 2021, 140, 104436. [Google Scholar] [CrossRef]
- Zhang, J.M.; Luo, Y.; Zhou, Z.; Chong, L.; Victor, C.; Zhang, Y.F. Effects of Preferential Flow Induced by Desiccation Cracks on Slope Stability. Eng. Geol. 2021, 288, 106164. [Google Scholar] [CrossRef]
- Tichavský, R.; Antonio Ballesteros-Cánovas, J.; Šilhán, K.; Tolasz, R.; Stoffel, M. Dry Spells and Extreme Precipitation Are the Main Trigger of Landslides in Central Europe. Sci. Rep. 2019, 9, 14560. [Google Scholar] [CrossRef]
YEAR OF MEASUREMENT | METEOROLOGICAL STATIONS (MSs) | |||
---|---|---|---|---|
Pisarovina MS ZC (mm) | Zagreb-Pleso Airport MS CZ (mm) | Sisak MS SMC (mm) | Kravarsko MS ZC (mm) | |
2012 | 949 | 853 | 811 | 728 |
2013 | 1331 | 1150 | 1072 | 966 |
2014 | 1634 | 1460 | 1451 | 1601 |
2015 | 1062 | 935 | 1003 | 1047 |
2016 | 1035 | 974 | 1024 | 1107 |
2017 | 937 | 922 | 939 | 1001 |
2018 | 871 | 968 | 924 | 980 |
2019 | 1226 | 1054 | 1096 | 1234 |
2020 | 917 | 959 | 761 | 917 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklin, L.; Podolszki, L.; Gulam, V.; Markotić, I. The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia. Remote Sens. 2022, 14, 1794. https://doi.org/10.3390/rs14081794
Miklin L, Podolszki L, Gulam V, Markotić I. The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia. Remote Sensing. 2022; 14(8):1794. https://doi.org/10.3390/rs14081794
Chicago/Turabian StyleMiklin, Luka, Laszlo Podolszki, Vlatko Gulam, and Ivan Markotić. 2022. "The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia" Remote Sensing 14, no. 8: 1794. https://doi.org/10.3390/rs14081794
APA StyleMiklin, L., Podolszki, L., Gulam, V., & Markotić, I. (2022). The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia. Remote Sensing, 14(8), 1794. https://doi.org/10.3390/rs14081794